Subband structure of II-VI modulation-doped magnetic quantum wells
Here we investigate the spin-dependent subband structure of newly-developed Mn-based modulation-doped quantum wells. In the presence of an external magnetic field, the s-d exchange coupling between carriers and localized d electrons of the Mn impurities gives rise to large spin splittings resulting in a magnetic-field dependent subband structure. Within the framework of the effective-mass approximation, we self-consistently calculate the subband structure at zero temperature using Density Functional Theory (DFT) with a Local Spin Density Approximation (LSDA). We present results for the magnetic-field dependence of the subband structure of shallow ZnSe/ZnCdMnSe modulation doped quantum wells. Our results show a significant contribution to the self-consistent potential due to the exchange-correlation term. These calculations are the first step in the study of a variety ofinteresting spin-dependent phenomena, e.g., spin-resolved transport and many-body effects in polarized two-dimensional electron gases.
Main Authors: | , |
---|---|
Format: | Digital revista |
Language: | English |
Published: |
Sociedade Brasileira de Física
2002
|
Online Access: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332002000200021 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Here we investigate the spin-dependent subband structure of newly-developed Mn-based modulation-doped quantum wells. In the presence of an external magnetic field, the s-d exchange coupling between carriers and localized d electrons of the Mn impurities gives rise to large spin splittings resulting in a magnetic-field dependent subband structure. Within the framework of the effective-mass approximation, we self-consistently calculate the subband structure at zero temperature using Density Functional Theory (DFT) with a Local Spin Density Approximation (LSDA). We present results for the magnetic-field dependence of the subband structure of shallow ZnSe/ZnCdMnSe modulation doped quantum wells. Our results show a significant contribution to the self-consistent potential due to the exchange-correlation term. These calculations are the first step in the study of a variety ofinteresting spin-dependent phenomena, e.g., spin-resolved transport and many-body effects in polarized two-dimensional electron gases. |
---|