Chlorophyllin Derivatives as Photosensitizers: Synthesis and Photodynamic Properties

Two new photosensitizers (PSs) derived from copper-chlorophyllin were designed to have excitation wavelengths appropriate for the use in photodynamic therapy (PDT) and to have amphiphilic character with positive charge, which favors binding to cell membranes and walls and the intracellular localization in mitochondria. Herein we describe the synthesis and characterization of several properties of these two new PS, i.e., photophysical (absorption, fluorescence and singlet oxygen emission quantum yields, Φf and ΦΔ, respectively), physical-chemical (aggregation) and photobiological (binding, incorporation and cell killing). As expected, the aggregation affected not only the absorption spectra but also lowered considerably the values of Φf and ΦΔ, which could be controlled by the interaction of the PS with aqueous micelles. In vitro studies were performed in cells, mitochondria, and vesicles to determine uptake, membrane binding, cytotoxicity, phototoxicity, and intracellular localization. The positively charged derivatives showed to be considerably more efficient for cell killing than methylene blue.

Saved in:
Bibliographic Details
Main Authors: Uchoa,Adjaci F, Konopko,Aaron M., Baptista,Maurício S.
Format: Digital revista
Language:English
Published: Sociedade Brasileira de Química 2015
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532015001202615
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two new photosensitizers (PSs) derived from copper-chlorophyllin were designed to have excitation wavelengths appropriate for the use in photodynamic therapy (PDT) and to have amphiphilic character with positive charge, which favors binding to cell membranes and walls and the intracellular localization in mitochondria. Herein we describe the synthesis and characterization of several properties of these two new PS, i.e., photophysical (absorption, fluorescence and singlet oxygen emission quantum yields, Φf and ΦΔ, respectively), physical-chemical (aggregation) and photobiological (binding, incorporation and cell killing). As expected, the aggregation affected not only the absorption spectra but also lowered considerably the values of Φf and ΦΔ, which could be controlled by the interaction of the PS with aqueous micelles. In vitro studies were performed in cells, mitochondria, and vesicles to determine uptake, membrane binding, cytotoxicity, phototoxicity, and intracellular localization. The positively charged derivatives showed to be considerably more efficient for cell killing than methylene blue.