Ambient mass spectrometry employed for direct analysis of intact arabica coffee beans

The ambient ionization mass spectrometry techniques: desorption electrospray ionization (DESI) and easy ambient sonic-spray ionization (EASI) were explored as fast and simple ways to directly analyze the surface of intact green Arabica coffee beans treated by the dry, semi-dry and wet post-harvest methods. Five compounds were identified, including three components of the waxy layer that covers the green coffee beans (βN-arachinoyl-5-hydroxytryptamide, βN-behenoyl- 5-hydroxytryptamide, and βN-lignoceroyl-5-hydroxytryptamide) and that are commonly related to related to stomach irritations caused by coffee beverage consumption in sensitive people. Moreover, the multivariate statistical tool principal component analysis (PCA) was employed to differentiate the coffee post-harvest methods using data from the mass spectrometry fingerprinting analyses. Extraction procedures or sample pretreatment steps were not required for DESI and EASI analyses and the results obtained suggest therefore that these techniques could be used for rapid quality control and certification processes of coffees samples.

Saved in:
Bibliographic Details
Main Authors: Garrett,Rafael, Schwab,Nicolas V., Cabral,Elaine C., Henrique,Brenno V. M., Ifa,Demian R., Eberlin,Marcos N., Rezende,Claudia M.
Format: Digital revista
Language:English
Published: Sociedade Brasileira de Química 2014
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532014000700005
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The ambient ionization mass spectrometry techniques: desorption electrospray ionization (DESI) and easy ambient sonic-spray ionization (EASI) were explored as fast and simple ways to directly analyze the surface of intact green Arabica coffee beans treated by the dry, semi-dry and wet post-harvest methods. Five compounds were identified, including three components of the waxy layer that covers the green coffee beans (βN-arachinoyl-5-hydroxytryptamide, βN-behenoyl- 5-hydroxytryptamide, and βN-lignoceroyl-5-hydroxytryptamide) and that are commonly related to related to stomach irritations caused by coffee beverage consumption in sensitive people. Moreover, the multivariate statistical tool principal component analysis (PCA) was employed to differentiate the coffee post-harvest methods using data from the mass spectrometry fingerprinting analyses. Extraction procedures or sample pretreatment steps were not required for DESI and EASI analyses and the results obtained suggest therefore that these techniques could be used for rapid quality control and certification processes of coffees samples.