Spatial structure of Eugenia dysenterica based on essential oil chemovariations and implications for conservation and management of the genetic diversity of its populations

The chemical composition of essential oils was used to study the spatial structure of eight Eugenia dysenterica populations in central Brazilian Cerrado. Variation partitioning using spatial and environmental data sets as predictors was highly significant and explained 7.8 and 8.1% of oil chemovariations, respectively. Results suggested that essential oil polymorphism was genetically rather than environmentally determined. Furthermore, the intercept of the multivariate Mantel autocorrelogram between the distance matrices of oil constituents and sampling sites suggested that the populations differ chemically whenever geographical distance exceeds 120 km. It stands, therefore, as an alternative indicator of the minimal distance between samples required for conserving the genetic diversity of populations.

Saved in:
Bibliographic Details
Main Authors: Vilela,Eliane C., Carvalho,Thays C., Duarte,Alessandra R., Naves,Ronaldo R., Santos,Suzana C., Seraphin,José C., Ferri,Pedro H.
Format: Digital revista
Language:English
Published: Sociedade Brasileira de Química 2012
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532012001000003
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The chemical composition of essential oils was used to study the spatial structure of eight Eugenia dysenterica populations in central Brazilian Cerrado. Variation partitioning using spatial and environmental data sets as predictors was highly significant and explained 7.8 and 8.1% of oil chemovariations, respectively. Results suggested that essential oil polymorphism was genetically rather than environmentally determined. Furthermore, the intercept of the multivariate Mantel autocorrelogram between the distance matrices of oil constituents and sampling sites suggested that the populations differ chemically whenever geographical distance exceeds 120 km. It stands, therefore, as an alternative indicator of the minimal distance between samples required for conserving the genetic diversity of populations.