Intercalation and electrical behavior of Ta xMo1-xS2 (x > 0.5) layered mixed disulfides
This work reports a systematic study of the structural and electrical behavior of three ternary phases of the Ta xMo1-xS2 system (x = 0.55, 0.75 and 0.90) and their intercalation compounds resulting from both chemical and electrochemical lithium insertions, as well as from pyridine and poly(ethylene oxide) intercalations. The three ternary phases were prepared by direct reaction of their constituting elements, without any other additive, at 900 ºC in inert atmosphere. The resulting compounds were characterized by means of X-ray powder diffractometry (XRD), thermogravimetric and differential thermal (TGA/DTA) analyses, energy dispersive X-ray fluorescence (EDX) and field emission-scanning electron microscopy (FE-SEM). The electrical conductivity of the different products was measured in the 1.5-300 K temperature range using the conventional four probe van der Pauw method in the presence of a 9 T magnetic field in order to verify the occurrence of magnetoresistivity phenomena.
Main Authors: | , , , , |
---|---|
Format: | Digital revista |
Language: | English |
Published: |
Sociedade Brasileira de Química
2012
|
Online Access: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532012000300007 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work reports a systematic study of the structural and electrical behavior of three ternary phases of the Ta xMo1-xS2 system (x = 0.55, 0.75 and 0.90) and their intercalation compounds resulting from both chemical and electrochemical lithium insertions, as well as from pyridine and poly(ethylene oxide) intercalations. The three ternary phases were prepared by direct reaction of their constituting elements, without any other additive, at 900 ºC in inert atmosphere. The resulting compounds were characterized by means of X-ray powder diffractometry (XRD), thermogravimetric and differential thermal (TGA/DTA) analyses, energy dispersive X-ray fluorescence (EDX) and field emission-scanning electron microscopy (FE-SEM). The electrical conductivity of the different products was measured in the 1.5-300 K temperature range using the conventional four probe van der Pauw method in the presence of a 9 T magnetic field in order to verify the occurrence of magnetoresistivity phenomena. |
---|