Direct electrochemical analysis of dexamethasone endocrine disruptor in raw natural waters

This paper describes an electroanalytical methodology using square-wave adsorptive voltammetry, which has been successfully applied for the direct determination of dexamethasone residues in raw natural waters used for the public supply of the Ceará State, Brazil. The obtained detection limits ranged from 7.47 × 10-9 to 1.80 × 10-8 mol L-1 for the three matrices of raw natural waters evaluated. High percentages of average recovery (98.86% ± 0.72), repeatability (0.32% ± 0.05) and reproducibility (0.91% ± 0.20) were obtained in these samples, reaffirming the sensitivity of the procedure. Energy of the LUMO orbitals and Mülliken’s atomic charges were calculated using the functional BLYP/DNP. The theoretical results allied to the diagnostic criteria of the square-wave voltammetry indicate that the dexamethasone redox mechanism is associated to the quasi-reversible and irreversible reduction process of the ketone groups located at C-20 and C-3, respectively.

Saved in:
Bibliographic Details
Main Authors: Oliveira,Thiago M. B. F., Ribeiro,Francisco W. P., do Nascimento,Jefferson M., Soares,Janete E. S., Freire,Valder N., Becker,Helena, Lima-Neto,Pedro de, Correia,Adriana N.
Format: Digital revista
Language:English
Published: Sociedade Brasileira de Química 2012
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532012000100016
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper describes an electroanalytical methodology using square-wave adsorptive voltammetry, which has been successfully applied for the direct determination of dexamethasone residues in raw natural waters used for the public supply of the Ceará State, Brazil. The obtained detection limits ranged from 7.47 × 10-9 to 1.80 × 10-8 mol L-1 for the three matrices of raw natural waters evaluated. High percentages of average recovery (98.86% ± 0.72), repeatability (0.32% ± 0.05) and reproducibility (0.91% ± 0.20) were obtained in these samples, reaffirming the sensitivity of the procedure. Energy of the LUMO orbitals and Mülliken’s atomic charges were calculated using the functional BLYP/DNP. The theoretical results allied to the diagnostic criteria of the square-wave voltammetry indicate that the dexamethasone redox mechanism is associated to the quasi-reversible and irreversible reduction process of the ketone groups located at C-20 and C-3, respectively.