Determination of picloram in waters by sequential injection chromatography with UV detection

This paper describes a sequential injection chromatography procedure for determination of picloram in waters exploring the low backpressure of a 2.5 cm long monolithic C18 column. Separation of the analyte from the matrix was achieved in less than 60 s using a mobile phase composed by 20:80 (v v-1) acetonitrile:5.0 mmol L-1 H3PO4 and flow rate of 30 μL s-1. Detection was made at 223 nm with a 40 mm optical path length cell. The limits of detection and quantification were 33 and 137 μg L-1, respectively. The proposed method is sensitive enough to monitor the maximum concentration level for picloram in drinking water (500 μg L-1). The sampling frequency is 60 analyses per hour, consuming only 300 μL of acetonitrile per analysis. The proposed methodology was applied to spiked river water samples and no statistically significant differences were observed in comparison to a conventional HPLC-UV method.

Saved in:
Bibliographic Details
Main Authors: Santos,Luciana B. O. dos, Infante,Carlos M. C., Masini,Jorge C.
Format: Digital revista
Language:English
Published: Sociedade Brasileira de Química 2010
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532010000800022
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper describes a sequential injection chromatography procedure for determination of picloram in waters exploring the low backpressure of a 2.5 cm long monolithic C18 column. Separation of the analyte from the matrix was achieved in less than 60 s using a mobile phase composed by 20:80 (v v-1) acetonitrile:5.0 mmol L-1 H3PO4 and flow rate of 30 μL s-1. Detection was made at 223 nm with a 40 mm optical path length cell. The limits of detection and quantification were 33 and 137 μg L-1, respectively. The proposed method is sensitive enough to monitor the maximum concentration level for picloram in drinking water (500 μg L-1). The sampling frequency is 60 analyses per hour, consuming only 300 μL of acetonitrile per analysis. The proposed methodology was applied to spiked river water samples and no statistically significant differences were observed in comparison to a conventional HPLC-UV method.