Antimicrobial activity of Aegiphila sellowiana Cham., Lamiaceae, against oral pathogens

The antimicrobial activity of Aegiphila sellowiana Cham., Lamiaceae, against oral pathogens is reported. The Minimal Inhibitory Concentrations (MICs) for inhibiting the microorganisms growth were determined using the broth microdilution method from the CLSI M7-A7 protocol. Chlorhexidine was used as the positive control. The ethanol crude extract of the aerial parts of A. sellowiana exhibited activity against the microorganisms tested in this work; however, the activity decreased after partition with n-hexane, dichloromethane, and ethyl acetate. Among the tested fractions, the n-hexane fraction was found to be the most effective against the evaluated oral pathogens. GC-MS analysis of this latter fraction revealed that fatty acids esters, steroids, and aliphatic sesquiterpene hydrocarbons are its major constituents. These compounds may be responsible for the activity of the n-hexane fraction, but other chemical constituents of the dichloromethane, ethyl acetate, and hydroalcoholic fraction may potentialize their activities in the crude extract.

Saved in:
Bibliographic Details
Main Authors: Ferreira,Marcele A., Carvalho,Tatiane C., Turatti,Izabel C. C., Furtado,Niege A. J. C., Martins,Carlos H. G., Lopes,Norberto P., Cunha,Wilson R., Crotti,Antonio E. M.
Format: Digital revista
Language:English
Published: Sociedade Brasileira de Farmacognosia 2010
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0102-695X2010000200018
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The antimicrobial activity of Aegiphila sellowiana Cham., Lamiaceae, against oral pathogens is reported. The Minimal Inhibitory Concentrations (MICs) for inhibiting the microorganisms growth were determined using the broth microdilution method from the CLSI M7-A7 protocol. Chlorhexidine was used as the positive control. The ethanol crude extract of the aerial parts of A. sellowiana exhibited activity against the microorganisms tested in this work; however, the activity decreased after partition with n-hexane, dichloromethane, and ethyl acetate. Among the tested fractions, the n-hexane fraction was found to be the most effective against the evaluated oral pathogens. GC-MS analysis of this latter fraction revealed that fatty acids esters, steroids, and aliphatic sesquiterpene hydrocarbons are its major constituents. These compounds may be responsible for the activity of the n-hexane fraction, but other chemical constituents of the dichloromethane, ethyl acetate, and hydroalcoholic fraction may potentialize their activities in the crude extract.