Biflavonoids inhibit the production of aflatoxin by Aspergillus flavus

The biflavonoids 6,6"-bigenkwanin, amenthoflavone, 7,7"-dimethoxyagastisflavone and tetradimethoxybigenkwanin isolated from Ouratea species were tested for inhibitory activity on Aspergillus flavus cultures. Suspensions of Aspergillus flavus spores were inoculated into 50 ml of YES medium at different biflavonoid concentrations: 5 and 10 µg/ml for 6,6"-bigenkwanin, amenthoflavone and 7,7"-dimethoxyagastisflavone, and 5, 10, 15 and 20 µg/ml for tetradimethoxybigenkwanin. The four biflavonoids showed inhibitory activity on aflatoxin B1 and B2 production (P<0.001), but did not inhibit fungal growth at the concentration tested (P>0.05). These results show that biflavonoids can be used for the development of agents to control aflatoxin production.

Saved in:
Bibliographic Details
Main Authors: Gonçalez,E., Felicio,J.D., Pinto,M.M.
Format: Digital revista
Language:English
Published: Associação Brasileira de Divulgação Científica 2001
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2001001100013
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The biflavonoids 6,6"-bigenkwanin, amenthoflavone, 7,7"-dimethoxyagastisflavone and tetradimethoxybigenkwanin isolated from Ouratea species were tested for inhibitory activity on Aspergillus flavus cultures. Suspensions of Aspergillus flavus spores were inoculated into 50 ml of YES medium at different biflavonoid concentrations: 5 and 10 µg/ml for 6,6"-bigenkwanin, amenthoflavone and 7,7"-dimethoxyagastisflavone, and 5, 10, 15 and 20 µg/ml for tetradimethoxybigenkwanin. The four biflavonoids showed inhibitory activity on aflatoxin B1 and B2 production (P<0.001), but did not inhibit fungal growth at the concentration tested (P>0.05). These results show that biflavonoids can be used for the development of agents to control aflatoxin production.