Nasal swab real-time PCR is not suitable for in vivo diagnosis of bovine tuberculosis
ABSTRACT: Bovine tuberculosis (bTB) is a zoonosis causing economic losses and public health risks in many countries. The disease diagnosis in live animals is performed by intradermal tuberculin test, which is based on delayed hypersensitivity reactions. As tuberculosis has complex immune response, this test has limitations in sensitivity and specificity. This study sought to test an alternative approach for in vivo diagnosis of bovine tuberculosis, based on real-time polymerase chain reaction (PCR). DNA samples, extracted from nasal swabs of live cows, were used for SYBR® Green real-time PCR, which is able to differentiate between Mycobacterium tuberculosis and Mycobacterium avium complexes. Statistical analysis was performed to compare the results of tuberculin test, the in vivo gold standard bTB diagnosis method, with real-time PCR, thereby determining the specificity and sensitivity of molecular method. Cervical comparative test (CCT) was performed in 238 animals, of which 193 had suitable DNA from nasal swabs for molecular analysis, as indicated by amplification of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene, and were included in the study. In total, 25 (10.5%) of the animals were CCT reactive, of which none was positive in the molecular test. Of the 168 CCT negative animals, four were positive for M. tuberculosis complex at real time PCR from nasal swabs. The comparison of these results generated values of sensitivity and specificity of 0% and 97.6%, respectively; moreover, low coefficients of agreement and correlation (-0.029 and -0.049, respectively) between the results obtained with both tests were also observed. This study showed that real-time PCR from nasal swabs is not suitable for in vivo diagnosis of bovine tuberculosis; thus tuberculin skin test is still the best option for this purpose.
Main Authors: | , , , , , , |
---|---|
Format: | Digital revista |
Language: | English |
Published: |
Colégio Brasileiro de Patologia Animal - CBPA
2017
|
Online Access: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-736X2017000600549 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ABSTRACT: Bovine tuberculosis (bTB) is a zoonosis causing economic losses and public health risks in many countries. The disease diagnosis in live animals is performed by intradermal tuberculin test, which is based on delayed hypersensitivity reactions. As tuberculosis has complex immune response, this test has limitations in sensitivity and specificity. This study sought to test an alternative approach for in vivo diagnosis of bovine tuberculosis, based on real-time polymerase chain reaction (PCR). DNA samples, extracted from nasal swabs of live cows, were used for SYBR® Green real-time PCR, which is able to differentiate between Mycobacterium tuberculosis and Mycobacterium avium complexes. Statistical analysis was performed to compare the results of tuberculin test, the in vivo gold standard bTB diagnosis method, with real-time PCR, thereby determining the specificity and sensitivity of molecular method. Cervical comparative test (CCT) was performed in 238 animals, of which 193 had suitable DNA from nasal swabs for molecular analysis, as indicated by amplification of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene, and were included in the study. In total, 25 (10.5%) of the animals were CCT reactive, of which none was positive in the molecular test. Of the 168 CCT negative animals, four were positive for M. tuberculosis complex at real time PCR from nasal swabs. The comparison of these results generated values of sensitivity and specificity of 0% and 97.6%, respectively; moreover, low coefficients of agreement and correlation (-0.029 and -0.049, respectively) between the results obtained with both tests were also observed. This study showed that real-time PCR from nasal swabs is not suitable for in vivo diagnosis of bovine tuberculosis; thus tuberculin skin test is still the best option for this purpose. |
---|