SPATIAL VARIABILITY OF SOIL APPARENT ELECTRICAL CONDUCTIVITY - EFFECT OF THE NUMBER OF SUBSAMPLES

ABSTRACT Soil apparent electrical conductivity (ECa) sensors have been used to detect spatial variability because they correlate with soil attributes. Studies with soil attributes have shown that the number of subsamples and sampling points influences mapping. However, there are no studies that investigated the influence of sampling or subsampling density on ECa maps. Therefore, this study verified the influence of ECa readings per sample point on the semivariance and kriging analysis. The data were collected from an area (2.5 ha) of coffee plants. One hundred sampling points were measured considering 20 readings each. 1, 5, 10, 15, and 20 sample point readings were tested. The influence of the number of readings per sampling point on the ECa mapping was determined using linear regression analysis at a significance level of 5%. The results obtained showed that ECa readings per sampling point significantly influence ECa maps. In addition, they demonstrated that reducing the number of readings per sampling point increases prediction errors by kriging. Thus, ECa maps determined with the highest readings per sampling point were mostly accurate.

Saved in:
Bibliographic Details
Main Authors: Sousa,Emanoel Di Tarso dos S., Queiroz,Daniel M. de, Rosas,Jorge T. F., Nascimento,Amélia L. do
Format: Digital revista
Language:English
Published: Associação Brasileira de Engenharia Agrícola 2021
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162021000300396
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT Soil apparent electrical conductivity (ECa) sensors have been used to detect spatial variability because they correlate with soil attributes. Studies with soil attributes have shown that the number of subsamples and sampling points influences mapping. However, there are no studies that investigated the influence of sampling or subsampling density on ECa maps. Therefore, this study verified the influence of ECa readings per sample point on the semivariance and kriging analysis. The data were collected from an area (2.5 ha) of coffee plants. One hundred sampling points were measured considering 20 readings each. 1, 5, 10, 15, and 20 sample point readings were tested. The influence of the number of readings per sampling point on the ECa mapping was determined using linear regression analysis at a significance level of 5%. The results obtained showed that ECa readings per sampling point significantly influence ECa maps. In addition, they demonstrated that reducing the number of readings per sampling point increases prediction errors by kriging. Thus, ECa maps determined with the highest readings per sampling point were mostly accurate.