MORPHOPHYSIOLOGICAL AND NUTRITIONAL BEHAVIOR OF Hymenaea stigonocarpa Mart. ex Hayne (FABACEAE) SEEDLINGS SUBMITTED TO LIMING

ABSTRACT Liming is beneficial for plants as it promotes pH elevation, neutralization of toxic aluminum, increase in calcium (Ca²+) and magnesium (Mg²+) supply, and provides greater root systems. However, it is known that different species, mainly those native to the Cerrado, respond in different ways to this technique. Given the above, the objective of this study was to determine how Hymenaea stigonocarpa (“Jatobá-do-Cerrado”) seedlings respond to liming in Dystrophic Red Latosol. The plants were cultivated in four-liter pots, submitted to different base saturation (natural soil, 30, 45, 60 and 75% V) and maintained in a greenhouse. Biometrics, biomass, nutritional content and physiological parameters were evaluated. A difference in Ca²+ and Mg²+ contents between leaves and stems was observed, leading to significant reductions in stomatal conductance, transpiration, internal CO2 concentration and internal and external CO2 concentration ratios, resulting in a reduction of the investment in growth and biomass. Given these results, there is no need for liming in the production of H. stigonocarpa seedlings in a Dystrophic Red Latosol.

Saved in:
Bibliographic Details
Main Authors: Silva,Patrícia Oliveira da, Carlos,Leandro, Menezes-Silva,Paulo Eduardo, Costa,Andréia Mendes da, Rodrigues,Carlos Ribeiro, Loram-Lourenço,Lucas, Dias,Jorciane Souza
Format: Digital revista
Language:English
Published: Sociedade de Investigações Florestais 2019
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-67622019000300205
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT Liming is beneficial for plants as it promotes pH elevation, neutralization of toxic aluminum, increase in calcium (Ca²+) and magnesium (Mg²+) supply, and provides greater root systems. However, it is known that different species, mainly those native to the Cerrado, respond in different ways to this technique. Given the above, the objective of this study was to determine how Hymenaea stigonocarpa (“Jatobá-do-Cerrado”) seedlings respond to liming in Dystrophic Red Latosol. The plants were cultivated in four-liter pots, submitted to different base saturation (natural soil, 30, 45, 60 and 75% V) and maintained in a greenhouse. Biometrics, biomass, nutritional content and physiological parameters were evaluated. A difference in Ca²+ and Mg²+ contents between leaves and stems was observed, leading to significant reductions in stomatal conductance, transpiration, internal CO2 concentration and internal and external CO2 concentration ratios, resulting in a reduction of the investment in growth and biomass. Given these results, there is no need for liming in the production of H. stigonocarpa seedlings in a Dystrophic Red Latosol.