Recomendações para calibração em Química Analítica parte 2: calibração multianalito
This paper is a translation of an IUPAC document by K. Danzer, M. Otto and L. A. Currie (Pure Appl. Chem., 2004, 76(6), 1215-1225). Its goal is to establish a uniform and meaningful standard for terminology (in Portuguese), notation, and formulation concerning multispecies calibration in analytical chemistry. Calibration in analytical chemistry refers to the relation between sample domain and measurement domain (signal domain) expressed by an analytical function x = f s (Q) representing a pattern of chemical species Q and their amounts or concentrations x in a given test sample and a measured function y = f (z) that may be a spectrum, chromatogram, etc. Simultaneous multispecies analyses are carried out mainly by spectroscopic and chromatographic methods in a more or less selective way. For the determination of n species Qi (i=1,2, ..., n), at least n signals must be measured which should be well separated in the ideal case. In analytical practice, the situation can be different.
Main Authors: | , , |
---|---|
Format: | Digital revista |
Language: | Portuguese |
Published: |
Sociedade Brasileira de Química
2008
|
Online Access: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422008000200047 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper is a translation of an IUPAC document by K. Danzer, M. Otto and L. A. Currie (Pure Appl. Chem., 2004, 76(6), 1215-1225). Its goal is to establish a uniform and meaningful standard for terminology (in Portuguese), notation, and formulation concerning multispecies calibration in analytical chemistry. Calibration in analytical chemistry refers to the relation between sample domain and measurement domain (signal domain) expressed by an analytical function x = f s (Q) representing a pattern of chemical species Q and their amounts or concentrations x in a given test sample and a measured function y = f (z) that may be a spectrum, chromatogram, etc. Simultaneous multispecies analyses are carried out mainly by spectroscopic and chromatographic methods in a more or less selective way. For the determination of n species Qi (i=1,2, ..., n), at least n signals must be measured which should be well separated in the ideal case. In analytical practice, the situation can be different. |
---|