Geographic pattern of genetic diversity in natural populations of Rosewood (Aniba rosaeodora), in the Central Amazonia
Rosewood (Aniba rosaeodora Ducke, Lauraceae) is an Amazonian evergreen tree and a source of the purest linalool, the main component of its essential oil, which is very valuable in the international perfumery market. After decades of over-exploitation it is currently considered as threatened. We evaluated the genetic diversity and its distribution in four populations in Central Amazonia. Thirty-five reliable RAPD markers were generated, of which 32 were polymorphic (91.4%). Variation was higher within the populations (76.5%; p < 0.0001) and geographic distribution contributed to population differentiation (23.4%; p < 0.0001). The Amazon River had a small influence on gene flow (3.3%; p < 0.0001), but we identified evidence of gene flow across the river. There were significant differences in marker frequencies (p < 0.05), in agreement with the low gene flow (Nm = 2.02). The correlation between genetic distance and gene flow was - 0.95 (p = 0.06) and between geographic distance and gene flow was -0.78 (p = 0.12). There was a geographic cline of variability across an East-West axis, influenced as well by the Amazon River, suggesting the river could be a barrier to gene flow. Although threatened, these Rosewood populations retain high diversity, with the highest levels in the Manaus population, which has been protected for over 42 years in a Reserve.
Main Authors: | , , , , , |
---|---|
Format: | Digital revista |
Language: | English |
Published: |
Instituto Nacional de Pesquisas da Amazônia
2008
|
Online Access: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0044-59672008000300010 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Rosewood (Aniba rosaeodora Ducke, Lauraceae) is an Amazonian evergreen tree and a source of the purest linalool, the main component of its essential oil, which is very valuable in the international perfumery market. After decades of over-exploitation it is currently considered as threatened. We evaluated the genetic diversity and its distribution in four populations in Central Amazonia. Thirty-five reliable RAPD markers were generated, of which 32 were polymorphic (91.4%). Variation was higher within the populations (76.5%; p < 0.0001) and geographic distribution contributed to population differentiation (23.4%; p < 0.0001). The Amazon River had a small influence on gene flow (3.3%; p < 0.0001), but we identified evidence of gene flow across the river. There were significant differences in marker frequencies (p < 0.05), in agreement with the low gene flow (Nm = 2.02). The correlation between genetic distance and gene flow was - 0.95 (p = 0.06) and between geographic distance and gene flow was -0.78 (p = 0.12). There was a geographic cline of variability across an East-West axis, influenced as well by the Amazon River, suggesting the river could be a barrier to gene flow. Although threatened, these Rosewood populations retain high diversity, with the highest levels in the Manaus population, which has been protected for over 42 years in a Reserve. |
---|