Spatial variability of soil penetration resistance influenced by season of sampling

The aim of this work was to analyze the spatial distribution of soil compaction and the influence of soil water content on the resistance to penetration. The latter variable was described by the cone index. The soil at the study site was a Nitisol and the cone index data were obtained using a penetrometer. Soil resistance was assessed at 5 different depths, i.e. 0-10 cm, 10-20 cm, 20-30 cm, 30-40 cm and deeper than 40 cm, whereas soil water content was measured at 0-20 cm and 20-40 cm. Soil water conditions varied during the different samplings. Coefficients of variation for cone index ranged from 16.5% to 45.8% while those for soil water content varied from 8.96% to 21.38%. Results suggested a high correlation between soil resistance, as assessed by the cone index, and soil depth. However, the expected relation with soil water content was not observed. Spatial dependence was observed in 31 out of 35 data series, both cone index and soil water content. This structure was fitted to exponential models with nugget effect varying from 0 to 90% of the sill value. Four of the data series showed a random behaviour. Inverse distance technique was used in order to map the distribution of the variables when no spatial structure was observed. Ordinary kriging showed a smoothing of the maps compared to those from inverse distance weighing. Indicator kriging was used to map the cone index spatial distribution for recommendation of further soil management.

Saved in:
Bibliographic Details
Main Authors: Bonnin,Juan José, Mirás-Avalos,José Manuel, Lanças,Kléber Pereira, González,Antonio Paz, Vieira,Sidney Rosa
Format: Digital revista
Language:English
Published: Instituto Agronômico de Campinas 2010
Online Access:http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0006-87052010000500017
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this work was to analyze the spatial distribution of soil compaction and the influence of soil water content on the resistance to penetration. The latter variable was described by the cone index. The soil at the study site was a Nitisol and the cone index data were obtained using a penetrometer. Soil resistance was assessed at 5 different depths, i.e. 0-10 cm, 10-20 cm, 20-30 cm, 30-40 cm and deeper than 40 cm, whereas soil water content was measured at 0-20 cm and 20-40 cm. Soil water conditions varied during the different samplings. Coefficients of variation for cone index ranged from 16.5% to 45.8% while those for soil water content varied from 8.96% to 21.38%. Results suggested a high correlation between soil resistance, as assessed by the cone index, and soil depth. However, the expected relation with soil water content was not observed. Spatial dependence was observed in 31 out of 35 data series, both cone index and soil water content. This structure was fitted to exponential models with nugget effect varying from 0 to 90% of the sill value. Four of the data series showed a random behaviour. Inverse distance technique was used in order to map the distribution of the variables when no spatial structure was observed. Ordinary kriging showed a smoothing of the maps compared to those from inverse distance weighing. Indicator kriging was used to map the cone index spatial distribution for recommendation of further soil management.