Effects of the source:sink ratio on the phenotypic plasticity of stem water potential in olive (Olea europaea L.)

The aims of this work were to quantify (i) the effect of the source:sink ratio on stem water potential (SWP) and (ii) the phenotypic plasticity of SWP and its relationship to oil yield components in olive. Trees with a 3-fold variation in the source:sink ratio (crown volume/fruit number per tree) were monitored in 2007–2008 and 2008–2009 in a fully irrigated orchard in Mendoza, Argentina. The combination of rainfall, irrigation, and evaporative demand led to a steady SWP largely above –1.65 MPa in 2007–2008 and a marked seasonal decline from –1.13 MPa to –2.04 MPa in trees with a medium and low source:sink ratio in 2008–2009. Plasticity was quantified as the slope of the norm of reaction for each trait. Across seasons, trees with a high source:sink ratio had a higher SWP than their counterparts with a medium and low source:sink ratio. Plasticity of SWP was highest in olives with a low source:sink ratio (slope=1.28) and lowest for trees with a high source:sink ratio (slope=0.76). The average SWP for each source:sink ratio and season was unrelated to both the source:sink ratio and yield components. On the other hand, the plasticity of SWP was positively associated with fruit number and negatively associated with the source:sink ratio, fruit weight, and fruit oil weight. The plasticity of the SWP was unrelated to SWP per se. It is concluded that understanding the effect of the source:sink ratio on plant water relations would benefit from a dual perspective considering the trait per se and its plasticity. A dual approach would also allow for more robust plant-based indicators for irrigation.

Saved in:
Bibliographic Details
Main Authors: Trentacoste, Eduardo Rafael, Sadras, Victor Oscar, Puertas, Carlos Marcelo
Format: info:ar-repo/semantics/artículo biblioteca
Language:eng
Published: Society for Experimental Biology 2011-06
Subjects:Olea europaea, Plasticidad Fenotípica, Medio Ambiente, Relaciones Planta Agua, Rendimiento, Phenotypic Plasticity, Environment, Plant Water Relations, Yields, Olivo, Olive,
Online Access:http://hdl.handle.net/20.500.12123/7450
https://academic.oup.com/jxb/article/62/10/3535/481553
https://doi.org/10.1093/jxb/err044
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aims of this work were to quantify (i) the effect of the source:sink ratio on stem water potential (SWP) and (ii) the phenotypic plasticity of SWP and its relationship to oil yield components in olive. Trees with a 3-fold variation in the source:sink ratio (crown volume/fruit number per tree) were monitored in 2007–2008 and 2008–2009 in a fully irrigated orchard in Mendoza, Argentina. The combination of rainfall, irrigation, and evaporative demand led to a steady SWP largely above –1.65 MPa in 2007–2008 and a marked seasonal decline from –1.13 MPa to –2.04 MPa in trees with a medium and low source:sink ratio in 2008–2009. Plasticity was quantified as the slope of the norm of reaction for each trait. Across seasons, trees with a high source:sink ratio had a higher SWP than their counterparts with a medium and low source:sink ratio. Plasticity of SWP was highest in olives with a low source:sink ratio (slope=1.28) and lowest for trees with a high source:sink ratio (slope=0.76). The average SWP for each source:sink ratio and season was unrelated to both the source:sink ratio and yield components. On the other hand, the plasticity of SWP was positively associated with fruit number and negatively associated with the source:sink ratio, fruit weight, and fruit oil weight. The plasticity of the SWP was unrelated to SWP per se. It is concluded that understanding the effect of the source:sink ratio on plant water relations would benefit from a dual perspective considering the trait per se and its plasticity. A dual approach would also allow for more robust plant-based indicators for irrigation.