A Comparison Between Single-Stage and Two-Stage 3D Tracking Algorithms for Greenhouse Robotics

With the current demand for automation in the agro-food industry, accurately detecting and localizing relevant objects in 3D is essential for successful robotic operations. However, this is a challenge due the presence of occlusions. Multi-view perception approaches allow robots to overcome occlusions, but a tracking component is needed to associate the objects detected by the robot over multiple viewpoints. Multi-object tracking (MOT) algorithms can be categorized between two-stage and single-stage methods. Two-stage methods tend to be simpler to adapt and implement to custom applications, while single-stage methods present a more complex end-to-end tracking method that can yield better results in occluded situations at the cost of more training data. The potential advantages of single-stage methods over two-stage methods depend on the complexity of the sequence of viewpoints that a robot needs to process. In this work, we compare a 3D two-stage MOT algorithm, 3D-SORT, against a 3D single-stage MOT algorithm, MOT-DETR, in three different types of sequences with varying levels of complexity. The sequences represent simpler and more complex motions that a robot arm can perform in a tomato greenhouse. Our experiments in a tomato greenhouse show that the single-stage algorithm consistently yields better tracking accuracy, especially in the more challenging sequences where objects are fully occluded or non-visible during several viewpoints.

Saved in:
Bibliographic Details
Main Authors: Rapado-Rincon, David, Burusa, Akshay K., van Henten, Eldert J., Kootstra, Gert
Format: Article/Letter to editor biblioteca
Language:English
Subjects:deep learning, multi-object tracking, robotics, robotics in agriculture, transformers,
Online Access:https://research.wur.nl/en/publications/a-comparison-between-single-stage-and-two-stage-3d-tracking-algor
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With the current demand for automation in the agro-food industry, accurately detecting and localizing relevant objects in 3D is essential for successful robotic operations. However, this is a challenge due the presence of occlusions. Multi-view perception approaches allow robots to overcome occlusions, but a tracking component is needed to associate the objects detected by the robot over multiple viewpoints. Multi-object tracking (MOT) algorithms can be categorized between two-stage and single-stage methods. Two-stage methods tend to be simpler to adapt and implement to custom applications, while single-stage methods present a more complex end-to-end tracking method that can yield better results in occluded situations at the cost of more training data. The potential advantages of single-stage methods over two-stage methods depend on the complexity of the sequence of viewpoints that a robot needs to process. In this work, we compare a 3D two-stage MOT algorithm, 3D-SORT, against a 3D single-stage MOT algorithm, MOT-DETR, in three different types of sequences with varying levels of complexity. The sequences represent simpler and more complex motions that a robot arm can perform in a tomato greenhouse. Our experiments in a tomato greenhouse show that the single-stage algorithm consistently yields better tracking accuracy, especially in the more challenging sequences where objects are fully occluded or non-visible during several viewpoints.