Sustainable Water Management in Horticulture : Problems, Premises, and Promises
Water is crucial for enduring horticultural productivity, but high water-use requirements and declining water supplies with the changing climate challenge economic viability, environmental sustainability, and social justice. While the scholarly literature pertaining to water management in horticulture abounds, knowledge of practices and technologies that optimize water use is scarce. Here, we review the scientific literature relating to water requirements for horticulture crops, impacts on water resources, and opportunities for improving water- and transpiration-use efficiency. We find that water requirements of horticultural crops vary widely, depending on crop type, development stage, and agroecological region, but investigations hitherto have primarily been superficial. Expansion of the horticulture sector has depleted and polluted water resources via overextraction and agrochemical contamination, but the extent and significance of such issues are not well quantified. We contend that innovative management practices and irrigation technologies can improve tactical water management and mitigate environmental impacts. Nature-based solutions in horticulture—mulching, organic amendments, hydrogels, and the like—alleviate irrigation needs, but information relating to their effectiveness across production systems and agroecological regions is limited. Novel and recycled water sources (e.g., treated wastewater, desalination) would seem promising avenues for reducing dependence on natural water resources, but such sources have detrimental environmental and human health trade-offs if not well managed. Irrigation practices including partial root-zone drying and regulated deficit irrigation evoke remarkable improvements in water use efficiency, but require significant experience for efficient implementation. More advanced applications, including IoT and AI (e.g., sensors, big data, data analytics, digital twins), have demonstrable potential in supporting smart irrigation (focused on scheduling) and precision irrigation (improving spatial distribution). While adoption of technologies and practices that improve sustainability is increasing, their application within the horticultural industry as a whole remains in its infancy. Further research, development, and extension is called for to enable successful adaptation to climate change, sustainably intensify food security, and align with other Sustainable Development Goals.
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article/Letter to editor biblioteca |
Language: | English |
Subjects: | IoT, artificial intelligence, horticulture, irrigation technologies, precision agriculture, water use efficiency, |
Online Access: | https://research.wur.nl/en/publications/sustainable-water-management-in-horticulture-problems-premises-an |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Water is crucial for enduring horticultural productivity, but high water-use requirements and declining water supplies with the changing climate challenge economic viability, environmental sustainability, and social justice. While the scholarly literature pertaining to water management in horticulture abounds, knowledge of practices and technologies that optimize water use is scarce. Here, we review the scientific literature relating to water requirements for horticulture crops, impacts on water resources, and opportunities for improving water- and transpiration-use efficiency. We find that water requirements of horticultural crops vary widely, depending on crop type, development stage, and agroecological region, but investigations hitherto have primarily been superficial. Expansion of the horticulture sector has depleted and polluted water resources via overextraction and agrochemical contamination, but the extent and significance of such issues are not well quantified. We contend that innovative management practices and irrigation technologies can improve tactical water management and mitigate environmental impacts. Nature-based solutions in horticulture—mulching, organic amendments, hydrogels, and the like—alleviate irrigation needs, but information relating to their effectiveness across production systems and agroecological regions is limited. Novel and recycled water sources (e.g., treated wastewater, desalination) would seem promising avenues for reducing dependence on natural water resources, but such sources have detrimental environmental and human health trade-offs if not well managed. Irrigation practices including partial root-zone drying and regulated deficit irrigation evoke remarkable improvements in water use efficiency, but require significant experience for efficient implementation. More advanced applications, including IoT and AI (e.g., sensors, big data, data analytics, digital twins), have demonstrable potential in supporting smart irrigation (focused on scheduling) and precision irrigation (improving spatial distribution). While adoption of technologies and practices that improve sustainability is increasing, their application within the horticultural industry as a whole remains in its infancy. Further research, development, and extension is called for to enable successful adaptation to climate change, sustainably intensify food security, and align with other Sustainable Development Goals. |
---|