Distribution, ecology, and threats assessment of 11 endemic frankincense tree taxa (Boswellia) in the Socotra Archipelago (Yemen)
Societal Impact Statement: Conserving frankincense trees (Boswellia) is crucial for both ecological and socio-economic reasons. Surveying these trees in the field and using remote sensing unmanned aerial vehicles in the Socotra Archipelago, we found that Socotran frankincense trees are threatened by forest fragmentation, overgrazing, and increasingly frequent extreme climate events. A better understanding of the distribution and the threats of these important insular species will improve the conservation policy of the local authorities and benefit local communities in the Socotra Archipelago. At the same time, this work serves as a good practice example to guide conservation efforts for other culturally important threatened tree species around the world, therefore helping to sustain local livelihoods, fostering ecological resilience, and supporting socio-economic stability. Summary: Globally, frankincense trees (Burseraceae: Boswellia) are increasingly under threat because of habitat deterioration, climate impacts, and the olibanum trade. Despite harboring nearly half of the species in the genus, up-to-date insights are lacking for the insular endemic frankincense trees of the Socotra Archipelago UNESCO (United Nations Educational, Scientific and Cultural Organization) World Heritage Site (Yemen). We combined georeferencing of individual trees in the field with remote sensing applying unmanned aerial vehicles (UAVs) to evaluate Boswellia distribution and (sub)population sizes in the entire Socotra Archipelago. We counted 17,253 trees across all 11 taxa and we surveyed almost 55% directly in the field, collecting individual information on threats and health indicators. We estimate that the current total population sizes of the relatively common Socotran Boswellia taxa (Boswellia elongata, Boswellia popoviana, and Boswellia ameero) consist of a few thousand mature individuals with fragmented distribution of which a large proportion occurs in highly disjunct relictual stands, while the more range-restricted species survive only through a few hundred (Boswellia nana and Boswellia samhaensis) to fewer than a hundred trees (Boswellia scopulorum). Our field data show that the Socotran frankincense trees are threatened by fragmentation and overgrazing resulting in a lack of natural regeneration, in combination with effects of extreme climate events (e.g., higher frequency and intensity of cyclones and prolonged drought) and potential future infrastructure developments; the species are less impacted by resin collection. We provide recommendations to strategize urgent protection of the declining Socotran frankincense trees, and we update their conservation status, resulting in an endangered status for seven and a critically endangered status for four taxa.
Main Authors: | , , , , , , , , , , , , , , , |
---|---|
Format: | Article/Letter to editor biblioteca |
Language: | English |
Subjects: | Boswellia, Soqotra, conservation, distribution, endangered species, frankincense trees, |
Online Access: | https://research.wur.nl/en/publications/distribution-ecology-and-threats-assessment-of-11-endemic-frankin |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Societal Impact Statement: Conserving frankincense trees (Boswellia) is crucial for both ecological and socio-economic reasons. Surveying these trees in the field and using remote sensing unmanned aerial vehicles in the Socotra Archipelago, we found that Socotran frankincense trees are threatened by forest fragmentation, overgrazing, and increasingly frequent extreme climate events. A better understanding of the distribution and the threats of these important insular species will improve the conservation policy of the local authorities and benefit local communities in the Socotra Archipelago. At the same time, this work serves as a good practice example to guide conservation efforts for other culturally important threatened tree species around the world, therefore helping to sustain local livelihoods, fostering ecological resilience, and supporting socio-economic stability. Summary: Globally, frankincense trees (Burseraceae: Boswellia) are increasingly under threat because of habitat deterioration, climate impacts, and the olibanum trade. Despite harboring nearly half of the species in the genus, up-to-date insights are lacking for the insular endemic frankincense trees of the Socotra Archipelago UNESCO (United Nations Educational, Scientific and Cultural Organization) World Heritage Site (Yemen). We combined georeferencing of individual trees in the field with remote sensing applying unmanned aerial vehicles (UAVs) to evaluate Boswellia distribution and (sub)population sizes in the entire Socotra Archipelago. We counted 17,253 trees across all 11 taxa and we surveyed almost 55% directly in the field, collecting individual information on threats and health indicators. We estimate that the current total population sizes of the relatively common Socotran Boswellia taxa (Boswellia elongata, Boswellia popoviana, and Boswellia ameero) consist of a few thousand mature individuals with fragmented distribution of which a large proportion occurs in highly disjunct relictual stands, while the more range-restricted species survive only through a few hundred (Boswellia nana and Boswellia samhaensis) to fewer than a hundred trees (Boswellia scopulorum). Our field data show that the Socotran frankincense trees are threatened by fragmentation and overgrazing resulting in a lack of natural regeneration, in combination with effects of extreme climate events (e.g., higher frequency and intensity of cyclones and prolonged drought) and potential future infrastructure developments; the species are less impacted by resin collection. We provide recommendations to strategize urgent protection of the declining Socotran frankincense trees, and we update their conservation status, resulting in an endangered status for seven and a critically endangered status for four taxa. |
---|