STA-SST: Spatio-temporal time series prediction of Moroccan Sea surface temperature

Global Sea Surface Temperature (SST) trends have garnered significant attention in several ocean-related domains, including global warming, marine biodiversity, and environmental protection. This involves having an accurate and efficient forecast of future SST to ensure early detection and response in time to these events. Deep learning algorithms have become popular in SST prediction recently, although directly obtaining optimal prediction results from historical observation data is not simple. In this paper, we propose STA-SST, a new deep learning approach for forecasting SST, by combining the temporal dependencies of SST using the Bidirectional Long Short-Term Memory (BiLSTM) model, spatial features extracted from the convolution layer, and relevant information from the attention mechanism. To assess how well the Attention-BiLSTM with convolution layer predicts SST, we conducted a case study in the Moroccan Sea, concentrating on five different areas. The proposed model was compared against alternative forecasting models, including LSTM, XGBoost, Support Vector Regression (SVR), and Random Forest (RF). The experimental results show that STA-STT produces noticeably the best prediction results and is a solid choice for field implementation.

Saved in:
Bibliographic Details
Main Authors: Elafi, Isam, Zrira, Nabila, Kamal-Idrissi, Assia, Khan, Haris Ahmad, Ettouhami, Aziz
Format: Article/Letter to editor biblioteca
Language:English
Subjects:Attention, BiLSTM, Convolution, Forecasting, Marine data, Morocco, Sea surface temperature (SST),
Online Access:https://research.wur.nl/en/publications/sta-sst-spatio-temporal-time-series-prediction-of-moroccan-sea-su
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Global Sea Surface Temperature (SST) trends have garnered significant attention in several ocean-related domains, including global warming, marine biodiversity, and environmental protection. This involves having an accurate and efficient forecast of future SST to ensure early detection and response in time to these events. Deep learning algorithms have become popular in SST prediction recently, although directly obtaining optimal prediction results from historical observation data is not simple. In this paper, we propose STA-SST, a new deep learning approach for forecasting SST, by combining the temporal dependencies of SST using the Bidirectional Long Short-Term Memory (BiLSTM) model, spatial features extracted from the convolution layer, and relevant information from the attention mechanism. To assess how well the Attention-BiLSTM with convolution layer predicts SST, we conducted a case study in the Moroccan Sea, concentrating on five different areas. The proposed model was compared against alternative forecasting models, including LSTM, XGBoost, Support Vector Regression (SVR), and Random Forest (RF). The experimental results show that STA-STT produces noticeably the best prediction results and is a solid choice for field implementation.