pH-Responsive Elastin-Like Polypeptide Designer Condensates

Biomolecular condensates are macromolecular complexes formed by liquid–liquid phase separation. They regulate key biological functions by reversibly compartmentalizing molecules in cells, in a stimulus-dependent manner. Designing stimuli-responsive synthetic condensates is crucial for engineering compartmentalized synthetic cells that are able to mimic spatiotemporal control over the biochemical reactions. Here, we design and test a family of condensate-forming, pH-responsive elastin-like polypeptides (ELPs) that form condensates above critical pH values ranging between 4 and 7, for temperatures between 20 and at 37 °C. We show that the condensation occurs rapidly, in sharp pH intervals (ΔpH < 0.3). For eventual applications in engineering synthetic cell compartments, we demonstrate that multiple types of pH-responsive ELPs can form mixed condensates inside micron-sized vesicles. When genetically fused with enzymes, receptors, and signaling molecules, these pH-responsive ELPs could be potentially used as pH-switchable functional condensates for spatially controlling biochemistry in engineered synthetic cells

Saved in:
Bibliographic Details
Main Authors: de Haas, Rob, Ganar, Ketan, Deshpande, Siddharth, de Vries, Renko
Format: Article/Letter to editor biblioteca
Language:English
Subjects:Life Science,
Online Access:https://research.wur.nl/en/publications/ph-responsive-elastin-like-polypeptide-designer-condensates
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Biomolecular condensates are macromolecular complexes formed by liquid–liquid phase separation. They regulate key biological functions by reversibly compartmentalizing molecules in cells, in a stimulus-dependent manner. Designing stimuli-responsive synthetic condensates is crucial for engineering compartmentalized synthetic cells that are able to mimic spatiotemporal control over the biochemical reactions. Here, we design and test a family of condensate-forming, pH-responsive elastin-like polypeptides (ELPs) that form condensates above critical pH values ranging between 4 and 7, for temperatures between 20 and at 37 °C. We show that the condensation occurs rapidly, in sharp pH intervals (ΔpH < 0.3). For eventual applications in engineering synthetic cell compartments, we demonstrate that multiple types of pH-responsive ELPs can form mixed condensates inside micron-sized vesicles. When genetically fused with enzymes, receptors, and signaling molecules, these pH-responsive ELPs could be potentially used as pH-switchable functional condensates for spatially controlling biochemistry in engineered synthetic cells