The effect of cations and epigallocatechin gallate on in vitro salivary lubrication

Ionic valency influences oral processing by changing salivary behavior and merits more attention since little is known. In this study, the influence of three ionic valences (monovalent, divalent and trivalent), ionic strength and epigallocatechin gallate (EGCG) on lubricating properties of saliva were investigated. Tribological measurements were used to characterize the lubrication response of KCl, MgCl2, FeCl3, and AlCl3 in combination with EGCG to the ex vivo salivary pellicle. KCl at 150 mM ionic strength provided extra lubrication via hydration lubrication. Contrarily, trivalent salts aggregated together with the salivary mucins via ionic cross-link interactions, which led to a decrease in salivary lubrication. FeCl3 and AlCl3 affected the salivary lubrication differently, which was attributed to changes in the pH. Finally, in presence of EGCG, FeCl3 interacted with EGCG via chelating interactions, preventing salivary protein aggregation. This resulted in less desorption of the salivary film, retaining the lubrication ability of salivary proteins.

Saved in:
Bibliographic Details
Main Authors: Agorastos, Georgios, van Uitert, E., van Halsema, Emo, Scholten, Elke, Bast, Aalt, Klosse, Peter
Format: Article/Letter to editor biblioteca
Language:English
Subjects:Astringency, Friction, Ionic strength, Lubrication, Saliva, Valency,
Online Access:https://research.wur.nl/en/publications/the-effect-of-cations-and-epigallocatechin-gallate-on-in-vitro-sa
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ionic valency influences oral processing by changing salivary behavior and merits more attention since little is known. In this study, the influence of three ionic valences (monovalent, divalent and trivalent), ionic strength and epigallocatechin gallate (EGCG) on lubricating properties of saliva were investigated. Tribological measurements were used to characterize the lubrication response of KCl, MgCl2, FeCl3, and AlCl3 in combination with EGCG to the ex vivo salivary pellicle. KCl at 150 mM ionic strength provided extra lubrication via hydration lubrication. Contrarily, trivalent salts aggregated together with the salivary mucins via ionic cross-link interactions, which led to a decrease in salivary lubrication. FeCl3 and AlCl3 affected the salivary lubrication differently, which was attributed to changes in the pH. Finally, in presence of EGCG, FeCl3 interacted with EGCG via chelating interactions, preventing salivary protein aggregation. This resulted in less desorption of the salivary film, retaining the lubrication ability of salivary proteins.