T‐Cup: A Cheap, Rapid, and Simple Home Device for Isothermal Nucleic Acid Amplification

During the SARS-CoV2 pandemic, it has become clear that centralized testing suffers from multiple bottlenecks. Logistics, number of machines, and people available to run the diagnostic tests are limited. A solution to those bottlenecks would be a fully decentralized system, where people can test themselves at home and only report back the outcome of the test in a centralized database. Here a noninstrumental device capable of achieving isothermal conditions useful for detecting the SARS-CoV2 RNA using loop mediated amplification (LAMP) tests is presented. This device, compared to others reported in literature or present on the market, is cheap, easy to produce and use, and has little impact on the environment. Using a simple aluminum coffee capsule, a phase change material, and a 3D printed holder, this device, when placed in boiling water, is able to maintain a temperature of 65 °C for 25 min, required for running the LAMP reaction. In principle, this device can be applied to any LAMP reaction, and hence employed for many different applications, and can be deployed in large quantities in short amount of time.

Saved in:
Bibliographic Details
Main Authors: Velders, Aldrik H., Ossendrijver, Michel, Keijser, Bart J.F., Saggiomo, Vittorio
Format: Article/Letter to editor biblioteca
Language:English
Subjects:Life Science,
Online Access:https://research.wur.nl/en/publications/tcup-a-cheap-rapid-and-simple-home-device-for-isothermal-nucleic-
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:During the SARS-CoV2 pandemic, it has become clear that centralized testing suffers from multiple bottlenecks. Logistics, number of machines, and people available to run the diagnostic tests are limited. A solution to those bottlenecks would be a fully decentralized system, where people can test themselves at home and only report back the outcome of the test in a centralized database. Here a noninstrumental device capable of achieving isothermal conditions useful for detecting the SARS-CoV2 RNA using loop mediated amplification (LAMP) tests is presented. This device, compared to others reported in literature or present on the market, is cheap, easy to produce and use, and has little impact on the environment. Using a simple aluminum coffee capsule, a phase change material, and a 3D printed holder, this device, when placed in boiling water, is able to maintain a temperature of 65 °C for 25 min, required for running the LAMP reaction. In principle, this device can be applied to any LAMP reaction, and hence employed for many different applications, and can be deployed in large quantities in short amount of time.