Use of Physiologically Based Pharmacokinetic Modeling to Predict Human Gut Microbial Conversion of Daidzein to S-Equol

A physiologically based pharmacokinetic (PBPK) model was developed for daidzein and its metabolite S-equol. Anaerobic in vitro incubations of pooled fecal samples from S-equol producers and nonproducers allowed definition of the kinetic constants. PBPK model-based predictions for the maximum daidzein plasma concentration (Cmax) were comparable to literature data. The predictions also revealed that the Cmax of S-equol in producers was only up to 0.22% that of daidzein, indicating that despite its higher estrogenicity, S-equol is likely to contribute to the overall estrogenicity upon human daidzein exposure to a only limited extent. An interspecies comparison between humans and rats revealed that the catalytic efficiency for S-equol formation in rats was 210-fold higher than that of human S-equol producers. The described in vitro-in silico strategy provides a proof-of-principle on how to include microbial metabolism in humans in PBPK modeling as part of the development of new approach methodologies (NAMs).

Saved in:
Bibliographic Details
Main Authors: Wang, Qianrui, Spenkelink, Bert, Boonpawa, Rungnapa, Rietjens, Ivonne M.C.M.
Format: Article/Letter to editor biblioteca
Language:English
Subjects:S-equol, daidzein, gut microbiota, physiologically based pharmacokinetic (PBPK) modeling,
Online Access:https://research.wur.nl/en/publications/use-of-physiologically-based-pharmacokinetic-modeling-to-predict-
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A physiologically based pharmacokinetic (PBPK) model was developed for daidzein and its metabolite S-equol. Anaerobic in vitro incubations of pooled fecal samples from S-equol producers and nonproducers allowed definition of the kinetic constants. PBPK model-based predictions for the maximum daidzein plasma concentration (Cmax) were comparable to literature data. The predictions also revealed that the Cmax of S-equol in producers was only up to 0.22% that of daidzein, indicating that despite its higher estrogenicity, S-equol is likely to contribute to the overall estrogenicity upon human daidzein exposure to a only limited extent. An interspecies comparison between humans and rats revealed that the catalytic efficiency for S-equol formation in rats was 210-fold higher than that of human S-equol producers. The described in vitro-in silico strategy provides a proof-of-principle on how to include microbial metabolism in humans in PBPK modeling as part of the development of new approach methodologies (NAMs).