Dual Polarimetric SAR Covariance Matrix Estimation Using Deep Learning
A polarimetric Synthetic Aperture Radar (PoISAR) image is able to capture target backscattering properties in different polarimetric states, making it a rich source of information for target characterization. However, as with any SAR image, PolSAR images are affected by speckle. Therefore, to extract useful information about targets, the polarimetric covariance matrix has to be first estimated by reducing speckle. In this paper, we use a deep neural network to estimate the dual PolSAR covariance matrix. This application was compared against the state of the art PolSAR despeckling methods. Even if the method is agnostic on the structure of the covariance matrix, the deep learning based PolSAR covariance matrix estimation performed better than the state of the art PolSAR despeckling methods. These results showcase the potential of supervised deep learning for the improvement of PolSAR despeckling pipelines.
Main Authors: | , , , |
---|---|
Format: | Article in monograph or in proceedings biblioteca |
Language: | English |
Subjects: | Fully convolutional networks, PoISAR, Sentinel-1, Speckle, deep learning, |
Online Access: | https://research.wur.nl/en/publications/dual-polarimetric-sar-covariance-matrix-estimation-using-deep-lea |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A polarimetric Synthetic Aperture Radar (PoISAR) image is able to capture target backscattering properties in different polarimetric states, making it a rich source of information for target characterization. However, as with any SAR image, PolSAR images are affected by speckle. Therefore, to extract useful information about targets, the polarimetric covariance matrix has to be first estimated by reducing speckle. In this paper, we use a deep neural network to estimate the dual PolSAR covariance matrix. This application was compared against the state of the art PolSAR despeckling methods. Even if the method is agnostic on the structure of the covariance matrix, the deep learning based PolSAR covariance matrix estimation performed better than the state of the art PolSAR despeckling methods. These results showcase the potential of supervised deep learning for the improvement of PolSAR despeckling pipelines. |
---|