Wood-induced backwater effects in lowland streams
Placement of wood in streams has become a common method to increase ecological value in river and stream restoration and is widely used in natural environments. Water managers, however, are often hesitant to introduce wood in channels that drain agricultural and urban areas because of backwater effect concerns. This study aims to better understand the dependence of wood-induced backwater effects on cross-sectional area reduction and on discharge variation. A newly developed, one-dimensional stationary model demonstrates how a reduction in water level over the wood patch significantly increases directly after wood insertion. The water level drop is found to increase with discharge, up to a maximum level. If the discharge increases beyond this maximum, the water level drop reduces to a value that may represent the situation without wood. This reduction predominately depends on the obstruction ratio, calculated as the area covered by wood in the channel cross section divided by the total cross-sectional area. The model was calibrated with data from a field study in four lowland streams in the Netherlands. The field study showed that morphologic adjustments in the stream and reorientation of the woody material reduced the water level reduction over the patches in time. The backwater effects can thus be reduced by optimizing the location where wood patches are placed and by manipulating the obstruction ratio. The model can function as a generic tool to achieve a stream design with wood that optimizes the hydrological and ecological potential of streams.
Main Authors: | , , , , |
---|---|
Format: | Article/Letter to editor biblioteca |
Language: | English |
Subjects: | backwater effects, conceptual backwater effect model, stream hydraulics, woody debris in streams, |
Online Access: | https://research.wur.nl/en/publications/wood-induced-backwater-effects-in-lowland-streams |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Placement of wood in streams has become a common method to increase ecological value in river and stream restoration and is widely used in natural environments. Water managers, however, are often hesitant to introduce wood in channels that drain agricultural and urban areas because of backwater effect concerns. This study aims to better understand the dependence of wood-induced backwater effects on cross-sectional area reduction and on discharge variation. A newly developed, one-dimensional stationary model demonstrates how a reduction in water level over the wood patch significantly increases directly after wood insertion. The water level drop is found to increase with discharge, up to a maximum level. If the discharge increases beyond this maximum, the water level drop reduces to a value that may represent the situation without wood. This reduction predominately depends on the obstruction ratio, calculated as the area covered by wood in the channel cross section divided by the total cross-sectional area. The model was calibrated with data from a field study in four lowland streams in the Netherlands. The field study showed that morphologic adjustments in the stream and reorientation of the woody material reduced the water level reduction over the patches in time. The backwater effects can thus be reduced by optimizing the location where wood patches are placed and by manipulating the obstruction ratio. The model can function as a generic tool to achieve a stream design with wood that optimizes the hydrological and ecological potential of streams. |
---|