The fading boundaries between patient and environmental routes of triazole resistance selection in Aspergillus fumigatus
Aspergillus fumigatus is a saprobic fungus that may cause allergic syndromes, chronic pulmonary aspergillosis (CPA), and acute invasive aspergillosis (IA). Many patients suffering from aspergillus diseases benefit from antifungal therapy. Itraconazole, voriconazole, posaconazole, and isavuconazole have been shown to be the most effective compounds for prevention and treatment of the various aspergillus diseases. The use of alternative antifungal drugs, i.e., liposomal amphotericin B, is limited by toxicity and the echinocandins by fungistatic activity, while both also require intravenous access. As a consequence, the triazoles have become the recommended option for first-line therapy and chemoprophylaxis. Unfortunately, the effective use of triazoles has been threatened by the emergence of resistance in A. fumigatus. In voriconazole-treated patients, day 42 survival was 21% lower in voriconazole-resistant IA compared with voriconazole-susceptible infection. As the number of available drug classes is already very limited, some aspergillus diseases, such as central nervous system IA, are virtually untreatable if caused by a triazole-resistant isolate.
Main Authors: | , , , , , |
---|---|
Format: | Article/Letter to editor biblioteca |
Language: | English |
Subjects: | Life Science, |
Online Access: | https://research.wur.nl/en/publications/the-fading-boundaries-between-patient-and-environmental-routes-of |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Aspergillus fumigatus is a saprobic fungus that may cause allergic syndromes, chronic pulmonary aspergillosis (CPA), and acute invasive aspergillosis (IA). Many patients suffering from aspergillus diseases benefit from antifungal therapy. Itraconazole, voriconazole, posaconazole, and isavuconazole have been shown to be the most effective compounds for prevention and treatment of the various aspergillus diseases. The use of alternative antifungal drugs, i.e., liposomal amphotericin B, is limited by toxicity and the echinocandins by fungistatic activity, while both also require intravenous access. As a consequence, the triazoles have become the recommended option for first-line therapy and chemoprophylaxis. Unfortunately, the effective use of triazoles has been threatened by the emergence of resistance in A. fumigatus. In voriconazole-treated patients, day 42 survival was 21% lower in voriconazole-resistant IA compared with voriconazole-susceptible infection. As the number of available drug classes is already very limited, some aspergillus diseases, such as central nervous system IA, are virtually untreatable if caused by a triazole-resistant isolate. |
---|