Dunes, above and beyond : The interactions between ecological and geomorphological processes during early dune development

Coastal dunes occur along the sandy shores of most continents where they serve as coastal defence against flooding, provide areas for recreation, store drinking water and harbour unique biodiversity. Coastal dunes and the services they provide are threatened by climate-induced sea-level rise. This threat may be mitigated by the spontaneous formation of new dunes, for example in combination with mega-nourishments aimed at increasing beach width. Coastal dunes form by the interaction between vegetation, wind and wave action. Persistent dune development begins with the establishment of vegetation on the beach: the vegetation traps the wind-blown sand, forming an embryo dune. Over time an embryo dune can develop into a bigger foredune, increasing coastal safety. The formation and development of embryo dunes into foredunes depend on the vegetation establishment on the beach, dune growth over summer and dune erosion during winter. Although vegetation succession and geomorphological processes are each well described, the interaction between ecological and geomorphological processes during embryo dune development are not well known. The thesis aimed at further exploring these interactions, using a combination of experiments and high-resolution dune monitoring to study the mechanisms underlying early dune development and their implications for mega-nourishment design. To explore whether soil salinity, salt spray or storms determine the vegetation limit of dune building plant species on the beach, we performed a field transplantation experiment and a glasshouse experiment with two dune building grasses Ammophila arenaria and Elytrigia juncea. In the field growth of grasses transplanted into four vegetation zones from sea to dune was monitored for over a year and the response of these species to salt spray and soil salinity was tested in a glasshouse experiment. In the field, the vegetation zones were associated with differences in summer soil salinity: zones with both species present were significantly less saline than zones with only E. juncea or the zones without any vegetation. However, in our experiments the transplanted A. arenaria performed equal or better than E. juncea in all vegetation zones, suggesting soil salinity did not limit species performance at the studied site. Both species showed severe winter mortality. In the glasshouse experiment, A. arenaria biomass decreased linearly with soil salinity, presumably as a result of osmotic stress. Elytrigia juncea showed a nonlinear response to soil salinity with an optimum at 0.75% soil salinity and a decrease in biomass at higher salt concentrations. Our findings suggest that soil salinity stress either takes place in winter during storm inundation, or that development of vegetated dunes is less sensitive to soil salinity than hitherto expected. To understand the boundary conditions for embryo dune development over a longer time period we explored the effects of beach morphology, meteorological conditions and sand nourishment on early dune development using a 30 year time series of aerial photographs and beach profile monitoring data. We concluded that 1) beach morphology is highly influential in determining the potential for new dune development, with wide beaches enabling development of larger embryo dune fields, 2) sand nourishments stimulate early dune development by increasing beach width, and 3) weather conditions and non-interrupted sequences of years without high-intensity storms determine whether progressive dune development will take place. Dune development is the result of the interaction between vegetation development and sedimentation and erosion processes. To disentangle the effects of vegetation characteristics and that of dune size we monitored a natural dune field of 8 hectares for one year using an Unmanned Aerial Vehicle (UAV) with a camera. By constructing a digital surface model and a geometrical corrected image (an orthomosaic) for each flight campaign we calculated changes in dune volume over summer and winter and related these changes to vegetation, dune size and degree of shelter. The dune growth over summer was mainly determined by dune size, whereas dune growth over winter was determined by vegetation characteristics. Degree of shelter determined whether dune growth was limited by storm erosion (exposed dunes) or sand supply (sheltered dunes). These results suggest that vegetation characteristic may be particularly important for resisting storm erosion and speeding up recovery after erosion. Embryo dunes have been hypothesised to facilitate development of species rich green beach vegetation in the sheltered location between the embryo dunes and the primary foredunes. To test this hypothesis we explored the relative impacts of abiotic soil conditions as affected by the geomorphological setting on the species richness and species turn-over of green beach vegetation. To this end we characterised the geomorphology and measured abiotic conditions and species composition of green beach vegetation along transects from beach to foredune. We found that the geomorphological setting influenced plant species composition indirectly by affecting soil salinity and rate of sand burial. We found that plant species richness declined less at sheltered conditions, where there was a build-up of organic matter and no sand burial. Our results further suggest a non-linear relationship between embryo dune volume and number of green beach species: embryo dunes can be a source of shelter, thus stimulating green beach development, but can also compete for space, reducing green beach development. The net effect of embryo dunes most likely depends on the sediment budget of the beach and storm intensity. Mega-nourishments are single large sand nourishments that are applied locally, and are expected to exist for about 20 years, providing opportunities for the development of embryo dunes and rare pioneer plant communities (green beach vegetation). We explored this potential by comparing growth and development of dune building species on natural beaches with the results of plant transplantation and monitoring data of two mega-nourishments: the low-elevated Hondsbossche Duinen and the high-elevated Sandmotor. Our results suggest that establishment of dune building species on high-elevated mega-nourishment proceed slower than on natural beaches due to dispersal limitation. Once vegetation has established however, embryo dune development on high-elevated mega-nourishments may proceed faster than natural beaches due to low salinity and protection against storm erosion. Development of dune-building vegetation on the low-elevated mega-nourishment Hondsbossche Duinen showed the same rate and pattern as that on a natural beach. The potential for embryo dune development on mega-nourishments is far bigger than the potential for green beach development, since green beach vegetation develops under a narrower range of abiotic conditions. Such abiotic conditions can develop behind the shelter of embryo dunes or foredunes at low beach elevations. In conclusion this thesis shows that, 1) the potential of embryo dune development depends on a large beach width and low storm erosion which determines the vegetation limit. 2) Embryo dune growth over summer is mainly determined by existing dune volume and sand supply. 3) Heavy storms limit embryo dune development during winter, although dune erosion can be mitigated by vegetation composition. 4) On accreting beaches which continuously provide area for the development of new embryo dunes green beach vegetation can develop. 5) The design of a mega-nourishment determines the potential for the development of embryo dunes and green beach vegetation. Our findings provide insights in the interaction between ecological and geomorphological processes that determine embryo dune development. This knowledge can help to obtain better predictions of embryo dune development under the threat of sea-level rise.

Saved in:
Bibliographic Details
Main Author: Puijenbroek, Marinka E.B.
Other Authors: Berendse, F.
Format: Doctoral thesis biblioteca
Language:English
Published: Wageningen University
Subjects:beaches, duneland plants, dunes, ecology, geomorphology, vegetation, duinen, duinplanten, ecologie, geomorfologie, stranden, vegetatie,
Online Access:https://research.wur.nl/en/publications/dunes-above-and-beyond-the-interactions-between-ecological-and-ge
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Coastal dunes occur along the sandy shores of most continents where they serve as coastal defence against flooding, provide areas for recreation, store drinking water and harbour unique biodiversity. Coastal dunes and the services they provide are threatened by climate-induced sea-level rise. This threat may be mitigated by the spontaneous formation of new dunes, for example in combination with mega-nourishments aimed at increasing beach width. Coastal dunes form by the interaction between vegetation, wind and wave action. Persistent dune development begins with the establishment of vegetation on the beach: the vegetation traps the wind-blown sand, forming an embryo dune. Over time an embryo dune can develop into a bigger foredune, increasing coastal safety. The formation and development of embryo dunes into foredunes depend on the vegetation establishment on the beach, dune growth over summer and dune erosion during winter. Although vegetation succession and geomorphological processes are each well described, the interaction between ecological and geomorphological processes during embryo dune development are not well known. The thesis aimed at further exploring these interactions, using a combination of experiments and high-resolution dune monitoring to study the mechanisms underlying early dune development and their implications for mega-nourishment design. To explore whether soil salinity, salt spray or storms determine the vegetation limit of dune building plant species on the beach, we performed a field transplantation experiment and a glasshouse experiment with two dune building grasses Ammophila arenaria and Elytrigia juncea. In the field growth of grasses transplanted into four vegetation zones from sea to dune was monitored for over a year and the response of these species to salt spray and soil salinity was tested in a glasshouse experiment. In the field, the vegetation zones were associated with differences in summer soil salinity: zones with both species present were significantly less saline than zones with only E. juncea or the zones without any vegetation. However, in our experiments the transplanted A. arenaria performed equal or better than E. juncea in all vegetation zones, suggesting soil salinity did not limit species performance at the studied site. Both species showed severe winter mortality. In the glasshouse experiment, A. arenaria biomass decreased linearly with soil salinity, presumably as a result of osmotic stress. Elytrigia juncea showed a nonlinear response to soil salinity with an optimum at 0.75% soil salinity and a decrease in biomass at higher salt concentrations. Our findings suggest that soil salinity stress either takes place in winter during storm inundation, or that development of vegetated dunes is less sensitive to soil salinity than hitherto expected. To understand the boundary conditions for embryo dune development over a longer time period we explored the effects of beach morphology, meteorological conditions and sand nourishment on early dune development using a 30 year time series of aerial photographs and beach profile monitoring data. We concluded that 1) beach morphology is highly influential in determining the potential for new dune development, with wide beaches enabling development of larger embryo dune fields, 2) sand nourishments stimulate early dune development by increasing beach width, and 3) weather conditions and non-interrupted sequences of years without high-intensity storms determine whether progressive dune development will take place. Dune development is the result of the interaction between vegetation development and sedimentation and erosion processes. To disentangle the effects of vegetation characteristics and that of dune size we monitored a natural dune field of 8 hectares for one year using an Unmanned Aerial Vehicle (UAV) with a camera. By constructing a digital surface model and a geometrical corrected image (an orthomosaic) for each flight campaign we calculated changes in dune volume over summer and winter and related these changes to vegetation, dune size and degree of shelter. The dune growth over summer was mainly determined by dune size, whereas dune growth over winter was determined by vegetation characteristics. Degree of shelter determined whether dune growth was limited by storm erosion (exposed dunes) or sand supply (sheltered dunes). These results suggest that vegetation characteristic may be particularly important for resisting storm erosion and speeding up recovery after erosion. Embryo dunes have been hypothesised to facilitate development of species rich green beach vegetation in the sheltered location between the embryo dunes and the primary foredunes. To test this hypothesis we explored the relative impacts of abiotic soil conditions as affected by the geomorphological setting on the species richness and species turn-over of green beach vegetation. To this end we characterised the geomorphology and measured abiotic conditions and species composition of green beach vegetation along transects from beach to foredune. We found that the geomorphological setting influenced plant species composition indirectly by affecting soil salinity and rate of sand burial. We found that plant species richness declined less at sheltered conditions, where there was a build-up of organic matter and no sand burial. Our results further suggest a non-linear relationship between embryo dune volume and number of green beach species: embryo dunes can be a source of shelter, thus stimulating green beach development, but can also compete for space, reducing green beach development. The net effect of embryo dunes most likely depends on the sediment budget of the beach and storm intensity. Mega-nourishments are single large sand nourishments that are applied locally, and are expected to exist for about 20 years, providing opportunities for the development of embryo dunes and rare pioneer plant communities (green beach vegetation). We explored this potential by comparing growth and development of dune building species on natural beaches with the results of plant transplantation and monitoring data of two mega-nourishments: the low-elevated Hondsbossche Duinen and the high-elevated Sandmotor. Our results suggest that establishment of dune building species on high-elevated mega-nourishment proceed slower than on natural beaches due to dispersal limitation. Once vegetation has established however, embryo dune development on high-elevated mega-nourishments may proceed faster than natural beaches due to low salinity and protection against storm erosion. Development of dune-building vegetation on the low-elevated mega-nourishment Hondsbossche Duinen showed the same rate and pattern as that on a natural beach. The potential for embryo dune development on mega-nourishments is far bigger than the potential for green beach development, since green beach vegetation develops under a narrower range of abiotic conditions. Such abiotic conditions can develop behind the shelter of embryo dunes or foredunes at low beach elevations. In conclusion this thesis shows that, 1) the potential of embryo dune development depends on a large beach width and low storm erosion which determines the vegetation limit. 2) Embryo dune growth over summer is mainly determined by existing dune volume and sand supply. 3) Heavy storms limit embryo dune development during winter, although dune erosion can be mitigated by vegetation composition. 4) On accreting beaches which continuously provide area for the development of new embryo dunes green beach vegetation can develop. 5) The design of a mega-nourishment determines the potential for the development of embryo dunes and green beach vegetation. Our findings provide insights in the interaction between ecological and geomorphological processes that determine embryo dune development. This knowledge can help to obtain better predictions of embryo dune development under the threat of sea-level rise.