Data from: Remote sensing of plant trait responses to field-based plant–soil feedback using UAV-based optical sensors

The experimental set-up, treatments, data collection and data analyses are thoroughly described in the Biogeoscience manuscript ‘Remote sensing of plant trait responses to field-based plant-soil feedback using UAV-based optical sensors’ doi:10.5194/bg-2016-452. Therefore we refer to the manuscript for detailed information an here we provide a brief summary to enable readers to follow what the data entail. The data were collected from a 2-year field experiment with plant rotations in a full factorial design. The plant treatments we focused on are legacy effects of the plant treatments (listed below) to the following oat crop. In this oat crop we quantified several plant traits both in situ and via remote sensing by use of UAV and hyperspectral and EGB sensors. The experiment was set-up in five randomized field blocks. We used part of the in situ collected data to parameterize the hyperspectral data based models and we validated these models with the other half of the field plots. Plant treatments Fa= fallow Lp= Lolium perenne Rs= Raphanus sativus Tr= Trifolium repens Vs= Vicia sativa Lp+Tr= 50:50 species mixture (relative to the monoculture seed densities) of the species Lp and Tr Rs+Vs= 50:50 species mixture (relative to the monoculture seed densities) of the species Rs and Vs

Saved in:
Bibliographic Details
Main Authors: Van Der Meij, Bob, Kooistra, L., Suomalainen, J.M., Barel, J.M., de Deyn, G.B.
Format: Dataset biblioteca
Published: Wageningen University & Research
Subjects:UAV remote sensing, biomass, high-resolution hyperspectral imagery, leaf chlorophyll, nitrogen, plant height, plant-soil feedback, soil legacy, treatment discrimination,
Online Access:https://research.wur.nl/en/datasets/data-from-remote-sensing-of-plant-trait-responses-to-field-based-
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The experimental set-up, treatments, data collection and data analyses are thoroughly described in the Biogeoscience manuscript ‘Remote sensing of plant trait responses to field-based plant-soil feedback using UAV-based optical sensors’ doi:10.5194/bg-2016-452. Therefore we refer to the manuscript for detailed information an here we provide a brief summary to enable readers to follow what the data entail. The data were collected from a 2-year field experiment with plant rotations in a full factorial design. The plant treatments we focused on are legacy effects of the plant treatments (listed below) to the following oat crop. In this oat crop we quantified several plant traits both in situ and via remote sensing by use of UAV and hyperspectral and EGB sensors. The experiment was set-up in five randomized field blocks. We used part of the in situ collected data to parameterize the hyperspectral data based models and we validated these models with the other half of the field plots. Plant treatments Fa= fallow Lp= Lolium perenne Rs= Raphanus sativus Tr= Trifolium repens Vs= Vicia sativa Lp+Tr= 50:50 species mixture (relative to the monoculture seed densities) of the species Lp and Tr Rs+Vs= 50:50 species mixture (relative to the monoculture seed densities) of the species Rs and Vs