Effects of phytase supplementation on phosphorus retention in broilers and layers: A meta-analysis

Phytase, a widely used feed additive in poultry diets, increases P availability and subsequently reduces inorganic-P supplementation and P-excretion. Phytase supplementation effect on P-retention in poultry has been investigated, but the effect sizes were highly variable. The present study’s objective was to conduct several meta-analyses to quantitatively summarize the phytase effect on P-retention in broilers and layers. Data from 103 and 26 controlled experiments testing the phytase effect on P-retention were included in 2 separate meta-analyses for broilers and layers, respectively. The mean difference calculated by subtracting the means of P-retention for the control group from the phytase-supplemented group was chosen as an effect size estimate. Between-study variability (heterogeneity) of mean difference was estimated using random-effect models and had a significant effect (P <0.01) in both broilers and layers. Therefore, random-effect models were extended to mixed-effect models to explain heterogeneity and obtain final phytase effect size estimates. Available dietary and bird variables were included as fixed effects in the mixed-effect models. The final broiler mixed-effect model included phytase dose and Ca-to-total-P ratio (Ca:tP), explaining 15.6% of the heterogeneity. Other variables such as breed might further explain between-study variance. Broilers consuming control diets were associated with 48.4% P-retention. Exogenous phytase supplementation at 1,039 FTU/kg of diet increased P-retention by 8.6 percentage units on average. A unit increase of phytase dose and Ca:tP from their means further increased P-retention. For layers, the final mixed-effect models included dietary Ca, age, and experimental period length. The variables explained 65.9% of the heterogeneity. Layers receiving exogenous phytase at 371 FTU/kg were associated with a 5.02 percentage unit increase in P-retention. A unit increase in dietary Ca from its mean increased P-retention, whereas an increase in the experiment length and layer’s age decreased P-retention. Phytase supplementation had a significant positive effect on P-retention in both broilers and layers, but effect sizes across studies were significantly heterogeneous due to differences in Ca contents, experiment length, bird age, and phytase dose.

Saved in:
Bibliographic Details
Main Authors: Bougouin, A., Appuhamy, J.A.D.R.N., Kebreab, E., Dijkstra, J., Kwakkel, R.P., France, J.
Format: Article/Letter to editor biblioteca
Language:English
Subjects:apparent metabolizable energy, coli-derived phytase, different calcium levels, growth-performance, laying hens, microbial phytase, nonphytate phosphorus, nutrient utilization, soybean meal diets, wheat-based diets,
Online Access:https://research.wur.nl/en/publications/effects-of-phytase-supplementation-on-phosphorus-retention-in-bro
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Phytase, a widely used feed additive in poultry diets, increases P availability and subsequently reduces inorganic-P supplementation and P-excretion. Phytase supplementation effect on P-retention in poultry has been investigated, but the effect sizes were highly variable. The present study’s objective was to conduct several meta-analyses to quantitatively summarize the phytase effect on P-retention in broilers and layers. Data from 103 and 26 controlled experiments testing the phytase effect on P-retention were included in 2 separate meta-analyses for broilers and layers, respectively. The mean difference calculated by subtracting the means of P-retention for the control group from the phytase-supplemented group was chosen as an effect size estimate. Between-study variability (heterogeneity) of mean difference was estimated using random-effect models and had a significant effect (P <0.01) in both broilers and layers. Therefore, random-effect models were extended to mixed-effect models to explain heterogeneity and obtain final phytase effect size estimates. Available dietary and bird variables were included as fixed effects in the mixed-effect models. The final broiler mixed-effect model included phytase dose and Ca-to-total-P ratio (Ca:tP), explaining 15.6% of the heterogeneity. Other variables such as breed might further explain between-study variance. Broilers consuming control diets were associated with 48.4% P-retention. Exogenous phytase supplementation at 1,039 FTU/kg of diet increased P-retention by 8.6 percentage units on average. A unit increase of phytase dose and Ca:tP from their means further increased P-retention. For layers, the final mixed-effect models included dietary Ca, age, and experimental period length. The variables explained 65.9% of the heterogeneity. Layers receiving exogenous phytase at 371 FTU/kg were associated with a 5.02 percentage unit increase in P-retention. A unit increase in dietary Ca from its mean increased P-retention, whereas an increase in the experiment length and layer’s age decreased P-retention. Phytase supplementation had a significant positive effect on P-retention in both broilers and layers, but effect sizes across studies were significantly heterogeneous due to differences in Ca contents, experiment length, bird age, and phytase dose.