Genetic relationships among mastitis and alternative somatic cell count traits in the first 3 lactations of Swedish Holsteins

The objectives of this study were to estimate heritabilities of, and genetic correlations among, clinical mastitis (CM), subclinical mastitis (SCM), and alternative somatic cell count (SCC) traits in the first 3 lactations of Swedish Holstein cows, and to estimate genetic correlations for the alternative traits across lactations. Data from cows having their first calving between 2002 and 2009 were used. The alternative SCC traits were based on information on CM and monthly test-day (TD) records of SCC traits of 178,613, 116,079, and 64,474 lactations in first, second, or third parity, respectively. Sires had an average of 230, 165, or 124 daughters in the data (parities 1, 2, or 3, respectively). Subclinical mastitis was defined as the number of periods with an SCC >150,000 cell/mL and without a treatment for CM. Average TD SCC between 5 and 150 d was used as a reference trait. The alternative SCC traits analyzed were 1) presence of at least 1 TD SCC between 41,000 and 80,000 cell/mL (TD41-80), 2) at least 1 TD SCC >500,000 cells/mL, 3) standard deviation of log SCC over the lactation, 4) number of infection peaks, and 5) average days diseased per peak. The same variables in different parities were treated as distinct traits. The statistical model considered the effects of herd-year, year, month, age at calving, animal, and residual. Heritability estimates were 0.07 to 0.08 for CM, 0.12 to 0.17 for SCM, and 0.14 for SCC150. For the alternative traits, heritability estimates were 0.12 to 0.17 for standard deviation of log SCC, TD SCC >500,000 cells/mL, and average days diseased per peak, and 0.06 to 0.10 for TD41-80 and number of infection peaks. Genetic correlations between CM with SCM were 0.62 to 0.74, and correlations for these traits with the alternative SCC traits were positive and very high (0.67 to 0.82 for CM, and 0.94 to 0.99 for SCM). Trait TD41-80 was the only alternative trait that showed negative, favorable, genetic correlations with CM (-0.22 to -0.50) and SCM (-0.48 to -0.85) because it is associated with healthy cows. Genetic correlations among the alternative traits in all 3 parities were high (0.93 to 0.99, 0.92 to 0.98, and 0.78 to 0.99, respectively). The only exception was TD41-80, which showed moderate to strong negative correlations with the rest of the traits. Genetic correlations of the same trait across parities were in general positive and very high (0.83 to 0.99). In conclusion, these alternative SCC traits could be used in practical breeding programs aiming to improve udder health in dairy cattle.

Saved in:
Bibliographic Details
Main Authors: Urioste, J.I., Franzén, J., Windig, J.J., Strandberg, E.
Format: Article/Letter to editor biblioteca
Language:English
Subjects:clinical mastitis, dairy-cattle, models, norwegian red cows, parameters, score, selection, subclinical mastitis,
Online Access:https://research.wur.nl/en/publications/genetic-relationships-among-mastitis-and-alternative-somatic-cell
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objectives of this study were to estimate heritabilities of, and genetic correlations among, clinical mastitis (CM), subclinical mastitis (SCM), and alternative somatic cell count (SCC) traits in the first 3 lactations of Swedish Holstein cows, and to estimate genetic correlations for the alternative traits across lactations. Data from cows having their first calving between 2002 and 2009 were used. The alternative SCC traits were based on information on CM and monthly test-day (TD) records of SCC traits of 178,613, 116,079, and 64,474 lactations in first, second, or third parity, respectively. Sires had an average of 230, 165, or 124 daughters in the data (parities 1, 2, or 3, respectively). Subclinical mastitis was defined as the number of periods with an SCC >150,000 cell/mL and without a treatment for CM. Average TD SCC between 5 and 150 d was used as a reference trait. The alternative SCC traits analyzed were 1) presence of at least 1 TD SCC between 41,000 and 80,000 cell/mL (TD41-80), 2) at least 1 TD SCC >500,000 cells/mL, 3) standard deviation of log SCC over the lactation, 4) number of infection peaks, and 5) average days diseased per peak. The same variables in different parities were treated as distinct traits. The statistical model considered the effects of herd-year, year, month, age at calving, animal, and residual. Heritability estimates were 0.07 to 0.08 for CM, 0.12 to 0.17 for SCM, and 0.14 for SCC150. For the alternative traits, heritability estimates were 0.12 to 0.17 for standard deviation of log SCC, TD SCC >500,000 cells/mL, and average days diseased per peak, and 0.06 to 0.10 for TD41-80 and number of infection peaks. Genetic correlations between CM with SCM were 0.62 to 0.74, and correlations for these traits with the alternative SCC traits were positive and very high (0.67 to 0.82 for CM, and 0.94 to 0.99 for SCM). Trait TD41-80 was the only alternative trait that showed negative, favorable, genetic correlations with CM (-0.22 to -0.50) and SCM (-0.48 to -0.85) because it is associated with healthy cows. Genetic correlations among the alternative traits in all 3 parities were high (0.93 to 0.99, 0.92 to 0.98, and 0.78 to 0.99, respectively). The only exception was TD41-80, which showed moderate to strong negative correlations with the rest of the traits. Genetic correlations of the same trait across parities were in general positive and very high (0.83 to 0.99). In conclusion, these alternative SCC traits could be used in practical breeding programs aiming to improve udder health in dairy cattle.