What are the main climate drivers for shrub growth in Northeastern Siberian tundra?

Deciduous shrubs are expected to rapidly expand in the Arctic during the coming decades due to climate warming. A transition towards more shrub-dominated tundra may have large implications for the regional surface energy balance, permafrost stability and carbon storage capacity, with consequences for the global climate system. However, little information is available on the natural long-term shrub growth response to climatic variability. Our aim was to determine the climate factor and time period that are most important to annual shrub growth in our research site in NE-Siberia. Therefore, we determined annual radial growth rates in Salix pulchra and Betula nana shrubs by measuring ring widths. We constructed shrub ring width chronologies and compared growth rates to regional climate and remotely sensed greenness data. Early summer temperature was the most important factor influencing ring width of S. pulchra (Pearson's r=0.73, p

Saved in:
Bibliographic Details
Main Authors: Blok, D., Sass-Klaassen, U., Schaepman-Strub, G., Heijmans, M.M.P.D., Sauren, P., Berendse, F.
Format: Article/Letter to editor biblioteca
Language:English
Subjects:alaskan arctic tundra, cassiope-tetragona, environmental-change, manipulation experiment, nitrogen mineralization, northern alaska, plant functional types, summer temperature, tree growth, vegetation types,
Online Access:https://research.wur.nl/en/publications/what-are-the-main-climate-drivers-for-shrub-growth-in-northeaster
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Deciduous shrubs are expected to rapidly expand in the Arctic during the coming decades due to climate warming. A transition towards more shrub-dominated tundra may have large implications for the regional surface energy balance, permafrost stability and carbon storage capacity, with consequences for the global climate system. However, little information is available on the natural long-term shrub growth response to climatic variability. Our aim was to determine the climate factor and time period that are most important to annual shrub growth in our research site in NE-Siberia. Therefore, we determined annual radial growth rates in Salix pulchra and Betula nana shrubs by measuring ring widths. We constructed shrub ring width chronologies and compared growth rates to regional climate and remotely sensed greenness data. Early summer temperature was the most important factor influencing ring width of S. pulchra (Pearson's r=0.73, p