Carbon budgets and carbon sequestration potential of Indian forests
Keywords: Carbon uptake, Forest biomass, Bioenergy, Land use change, Indian forests, Deforestation, Afforestation, Rotation length, Trees outside forests. Global climate change is a widespread and growing concern that has led to extensive international discussions and negotiations. Responses to this concern have focused on reducing emissions of greenhouse gases, especially carbon dioxide, and on measuring carbon absorbed by and stored in forests and soils. Forests are a significant part of the global carbon cycle. The amount of carbon stored, however, changes over time as forests grow and mature. Land use changes, especially afforestation and deforestation may have major impacts on carbon storage. An option for mitigating the accumulation of CO2 in the atmosphere is the enhanced sequestration of carbon by the biosphere through massive reforestation or sustainable afforestation programs. Reducing the rate of deforestation reduces carbon losses from the biosphere. Establishing plantations on former agricultural land may have less of an impact on increasing carbon sequestration than restoring natural forests. The focus of this study was to estimate the carbon budgets and carbon sequestration potential of Indian forests, assessing the possible impacts of land-use changes and climate change on carbon stocks of Indian forests, and the mitigation potential of using forest-based bioenergy for fossil fuel substitution. The results from this study show that over a 10-year period from 1992-2002, Indian forests have acted as a small carbon sink. Thus, India with high population density, low forest cover per capita, high dependence of a large part of human population on forests, and a predominantly agrarian economy, has been able to reduce deforestation rate and increase its forest cover and associated carbon sink in the terrestrial biosphere. Due to fast growth rate and adaptability to a range of environments, short rotation plantations, in addition to carbon storage, rapidly produce biomass for energy and contribute to reduced greenhouse gas emissions. India has the potential to create additional carbon sinks using marginal lands, while at the same time balancing economic development and environmental concerns.
Main Author: | |
---|---|
Other Authors: | |
Format: | Doctoral thesis biblioteca |
Language: | English |
Subjects: | afforestation, bioenergy, biomass, carbon, carbon sequestration, cycling, deforestation, forests, india, land use, bebossing, bio-energie, biomassa, bossen, koolstof, koolstofvastlegging, kringlopen, landgebruik, ontbossing, |
Online Access: | https://research.wur.nl/en/publications/carbon-budgets-and-carbon-sequestration-potential-of-indian-fores |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Keywords: Carbon uptake, Forest biomass, Bioenergy, Land use change, Indian forests, Deforestation, Afforestation, Rotation length, Trees outside forests. Global climate change is a widespread and growing concern that has led to extensive international discussions and negotiations. Responses to this concern have focused on reducing emissions of greenhouse gases, especially carbon dioxide, and on measuring carbon absorbed by and stored in forests and soils. Forests are a significant part of the global carbon cycle. The amount of carbon stored, however, changes over time as forests grow and mature. Land use changes, especially afforestation and deforestation may have major impacts on carbon storage. An option for mitigating the accumulation of CO2 in the atmosphere is the enhanced sequestration of carbon by the biosphere through massive reforestation or sustainable afforestation programs. Reducing the rate of deforestation reduces carbon losses from the biosphere. Establishing plantations on former agricultural land may have less of an impact on increasing carbon sequestration than restoring natural forests. The focus of this study was to estimate the carbon budgets and carbon sequestration potential of Indian forests, assessing the possible impacts of land-use changes and climate change on carbon stocks of Indian forests, and the mitigation potential of using forest-based bioenergy for fossil fuel substitution. The results from this study show that over a 10-year period from 1992-2002, Indian forests have acted as a small carbon sink. Thus, India with high population density, low forest cover per capita, high dependence of a large part of human population on forests, and a predominantly agrarian economy, has been able to reduce deforestation rate and increase its forest cover and associated carbon sink in the terrestrial biosphere. Due to fast growth rate and adaptability to a range of environments, short rotation plantations, in addition to carbon storage, rapidly produce biomass for energy and contribute to reduced greenhouse gas emissions. India has the potential to create additional carbon sinks using marginal lands, while at the same time balancing economic development and environmental concerns. |
---|