Simulating carbon exchange using a regional atmospheric model coupled to an advanced land-surface model
A large scale mismatch exists between our understanding and quantification of ecosystem atmosphere exchange of carbon dioxide at local scale and continental scales. This paper will focus on the carbon exchange on the regional scale to address the following 5 question: What are the main controlling factors determining atmospheric carbon dioxide content at a regional scale? We use the Regional Atmospheric Modelling System (RAMS), coupled with a land surface scheme simulating carbon, heat and momentum fluxes (SWAPS-C), and including also sub models for urban and marine fluxes, which in principle include the main controlling mechanisms and capture the relevant dynamics 10 of the system. To validate the model, observations are used which were taken during an intensive observational campaign in the central Netherlands in summer 2002. These included flux-site observations, vertical profiles at tall towers and spatial fluxes of various variables taken by aircraft. The coupled regional model (RAMS-SWAPS-C) generally does a good job in sim15 ulating results close to reality. The validation of the model demonstrates that surface fluxes of heat, water and CO2 are reasonably well simulated. The comparison against aircraft data shows that the regional meteorology is captured by the model. Comparing spatially explicit simulated and observed fluxes we conclude that in general simulated latent heat fluxes are underestimated by the model to the observations which exhibit 20 large standard deviation for all flights. Sensitivity experiments demonstrated the relevance of the urban emissions of carbon dioxide for the carbon balance in this particular region. The same test also show the relation between uncertainties in surface fluxes and those in atmospheric concentrations.
Main Authors: | , , |
---|---|
Format: | Article/Letter to editor biblioteca |
Language: | English |
Subjects: | boundary-layer, carbon dioxide, co2, complex terrain, dioxide, fluxes, gas-exchange, greenhouse gases, land use, mesoscale circulations, models, rain-forest, sea, valencia coastal region, broeikasgassen, kooldioxide, landgebruik, modellen, |
Online Access: | https://research.wur.nl/en/publications/simulating-carbon-exchange-using-a-regional-atmospheric-model-cou |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A large scale mismatch exists between our understanding and quantification of ecosystem atmosphere exchange of carbon dioxide at local scale and continental scales. This paper will focus on the carbon exchange on the regional scale to address the following 5 question: What are the main controlling factors determining atmospheric carbon dioxide content at a regional scale? We use the Regional Atmospheric Modelling System (RAMS), coupled with a land surface scheme simulating carbon, heat and momentum fluxes (SWAPS-C), and including also sub models for urban and marine fluxes, which in principle include the main controlling mechanisms and capture the relevant dynamics 10 of the system. To validate the model, observations are used which were taken during an intensive observational campaign in the central Netherlands in summer 2002. These included flux-site observations, vertical profiles at tall towers and spatial fluxes of various variables taken by aircraft. The coupled regional model (RAMS-SWAPS-C) generally does a good job in sim15 ulating results close to reality. The validation of the model demonstrates that surface fluxes of heat, water and CO2 are reasonably well simulated. The comparison against aircraft data shows that the regional meteorology is captured by the model. Comparing spatially explicit simulated and observed fluxes we conclude that in general simulated latent heat fluxes are underestimated by the model to the observations which exhibit 20 large standard deviation for all flights. Sensitivity experiments demonstrated the relevance of the urban emissions of carbon dioxide for the carbon balance in this particular region. The same test also show the relation between uncertainties in surface fluxes and those in atmospheric concentrations. |
---|