Toxicity of reduced nitrogen in eelgrass (Zostera marina) is highly dependent on shoot density and pH
In sheltered, eutrophicated estuaries, reduced nitrogen (NH x ), and pH levels in the water layer can be greatly enhanced. In laboratory experiments, we studied the interactive effects of NH x , pH, and shoot density on the physiology and survival of eelgrass (Zostera marina). We tested long-term tolerance to NH x at pH 8 in a 5-week experiment. Short-term tolerance was tested for two shoot densities at both pH 8 and 9 in a 5-day experiment. At pH 8, eelgrass accumulated nitrogen as free amino acids when exposed to high loads of NH x , but showed no signs of necrosis. Low shoot density treatments became necrotic within days when exposed to NH x at pH 9. Increased NH3 intrusion and carbon limitation seemed to be the cause of this, as intracellular NH x could no longer be assimilated. Remarkably, experiments with high shoot densities at pH 9 showed hardly any necrosis, as the plants seemed to be able to alleviate the toxic effects of high NH x loads through joint NH x uptake. Our results suggest that NH x toxicity can be important in worldwide observed seagrass mass mortalities. We argue that the mitigating effect of high seagrass biomass on NH x toxicity is a positive feedback mechanism, potentially leading to alternative stable states in field conditions.
Main Authors: | , , , , , |
---|---|
Format: | Article/Letter to editor biblioteca |
Language: | English |
Subjects: | ammonium toxicity, false discovery rate, free amino-acids, nh4+ toxicity, nutritional-status, pine needles, seagrass ecosystems, sediment sulfide, submersed macrophyte, water-column nitrate, |
Online Access: | https://research.wur.nl/en/publications/toxicity-of-reduced-nitrogen-in-eelgrass-zostera-marina-is-highly |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In sheltered, eutrophicated estuaries, reduced nitrogen (NH x ), and pH levels in the water layer can be greatly enhanced. In laboratory experiments, we studied the interactive effects of NH x , pH, and shoot density on the physiology and survival of eelgrass (Zostera marina). We tested long-term tolerance to NH x at pH 8 in a 5-week experiment. Short-term tolerance was tested for two shoot densities at both pH 8 and 9 in a 5-day experiment. At pH 8, eelgrass accumulated nitrogen as free amino acids when exposed to high loads of NH x , but showed no signs of necrosis. Low shoot density treatments became necrotic within days when exposed to NH x at pH 9. Increased NH3 intrusion and carbon limitation seemed to be the cause of this, as intracellular NH x could no longer be assimilated. Remarkably, experiments with high shoot densities at pH 9 showed hardly any necrosis, as the plants seemed to be able to alleviate the toxic effects of high NH x loads through joint NH x uptake. Our results suggest that NH x toxicity can be important in worldwide observed seagrass mass mortalities. We argue that the mitigating effect of high seagrass biomass on NH x toxicity is a positive feedback mechanism, potentially leading to alternative stable states in field conditions. |
---|