Structural Diversity using Hyp “Customizable Units”: Proof‐of‐Concept Synthesis of Sansalvamide‐Related Antitumoral Peptides

The potential of “customizable units” to generate structural diversity for biological screenings is highlighted in this proof‐of‐concept synthesis of new peptides related to the potent antitumoral Sansalvamide A. Using L‐4‐hydroxyproline (Hyp) as a customizable unit in a linear parent peptide, an improved procedure for selective peptide modification was developed. A divergent Hyp scission‐reductive amination process was carried out, affording five linear peptides with cationic residues, and notably, an N‐alkyl moiety that affected the conformation of the peptide. After two steps (saponification and macrocyclization), sixteen differently N1‐substituted linear and cyclic peptides were obtained. For the first time, the activity of the linear and cyclic compounds was compared. Not only some linear analogs but also cyclic compounds with scarcely studied cationic residues were active against MCF7 breast cancer line. Thus, the structural diversity generated from customizable units can be valuable in drug discovery.

Saved in:
Bibliographic Details
Main Authors: Cuevas, Fernando, Saavedra, Carlos J., Romero-Estudillo, Iván, Boto, Alicia, Ordóñez, Mario, Vergara, Irene
Other Authors: Consejo Nacional de Ciencia y Tecnología (México)
Format: artículo biblioteca
Language:English
Published: Wiley-VCH 2021-02-12
Subjects:Antitumor agents, Customizable units, Domino reactions, Molecular diversity, Peptides, Selective modification,
Online Access:http://hdl.handle.net/10261/229958
http://dx.doi.org/10.13039/501100003141
http://dx.doi.org/10.13039/501100004837
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The potential of “customizable units” to generate structural diversity for biological screenings is highlighted in this proof‐of‐concept synthesis of new peptides related to the potent antitumoral Sansalvamide A. Using L‐4‐hydroxyproline (Hyp) as a customizable unit in a linear parent peptide, an improved procedure for selective peptide modification was developed. A divergent Hyp scission‐reductive amination process was carried out, affording five linear peptides with cationic residues, and notably, an N‐alkyl moiety that affected the conformation of the peptide. After two steps (saponification and macrocyclization), sixteen differently N1‐substituted linear and cyclic peptides were obtained. For the first time, the activity of the linear and cyclic compounds was compared. Not only some linear analogs but also cyclic compounds with scarcely studied cationic residues were active against MCF7 breast cancer line. Thus, the structural diversity generated from customizable units can be valuable in drug discovery.