Antigenic stability of foot-and-mouth disease virus variants on serial passage in cell culture

Two neutralizing monoclonal antibody (MAb)-resistant variants selected from an isolate of foot-and-mouth disease virus (FMDV) type A5 were repeatedly passaged in cell culture and monitored for susceptibility to neutralization by the selecting MAb. A variant isolated with a MAb to a conformational epitope (1-OG2) lost resistance in 20 passages, while a variant isolated with a MAb to a linear epitope (1-HA6) persisted for 30 passages. In both cases, the virus population emerging after passage was antigenically and genetically indistinguishable from the original wild-type parental virus (FMDV A5 Spain-86). Coinfection assays with the wild type and each variant, and between the variants, showed rapid conversion to a homogeneous population. Wild-type virus prevailed over the variants and for coinfection between the variants, the linear epitope variant 1-HA6. While both variants arose from a single nucleotide substitution and reversion to wild type occurred for each, it appears that the variant based on the continuous epitope (1-HA6) was more stable. We discuss the implications of these results for the antigenic diversity of FMDV and its relationship to virus evolution.

Saved in:
Bibliographic Details
Main Authors: Gonzalez, M. J., Saiz Calahorra, Juan Carlos, Laor, O., Moore, D. M.
Format: journal article biblioteca
Language:English
Published: American Society for Microbiology 1991
Online Access:http://hdl.handle.net/20.500.12792/1846
http://hdl.handle.net/10261/293759
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two neutralizing monoclonal antibody (MAb)-resistant variants selected from an isolate of foot-and-mouth disease virus (FMDV) type A5 were repeatedly passaged in cell culture and monitored for susceptibility to neutralization by the selecting MAb. A variant isolated with a MAb to a conformational epitope (1-OG2) lost resistance in 20 passages, while a variant isolated with a MAb to a linear epitope (1-HA6) persisted for 30 passages. In both cases, the virus population emerging after passage was antigenically and genetically indistinguishable from the original wild-type parental virus (FMDV A5 Spain-86). Coinfection assays with the wild type and each variant, and between the variants, showed rapid conversion to a homogeneous population. Wild-type virus prevailed over the variants and for coinfection between the variants, the linear epitope variant 1-HA6. While both variants arose from a single nucleotide substitution and reversion to wild type occurred for each, it appears that the variant based on the continuous epitope (1-HA6) was more stable. We discuss the implications of these results for the antigenic diversity of FMDV and its relationship to virus evolution.