Abiotic factors modulate post-drought growth resilience of Scots pine plantations and rear-edge Scots pine and oak forests

The proportion of planted forests in the Mediterranean Basin is one of the largest in the world. These plantations are dominated by pine species and present a series of characteristics such as low elevation, high competition or small tree size that make them more vulnerable to droughts. However, quantitative assessments of their post-drought growth resilience in accordance with species, site factors and tree characteristics are lacking. In this study we sampled 164 trees at four forest sites located in the drought-prone Sierra Nevada, southeastern Spain. We compared growth responsiveness to drought in rear-edge planted vs. relic natural Scots pine (Pinus sylvestris) and coexisting Pyrenean oak (Quercus pyrenaica) stands. Our objective was to characterize and compare the different growth responses to drought between species and sites and the effect of the main physiographic factors (altitude, aspect, and slope) on these responses since the influence of these factors on post-drought resistance and resilience has received little attention to date. Our results reveal that the planted pine sites with the lowest mean growth rates displayed greater resistance during drought, and that higher altitude was associated with improved resistance and/or resilience for all species and sites. Natural pine and Pyrenean oak stands were better adapted to the dry climatic conditions of the Mediterranean region where the study was undertaken, displaying greater resistance and/or resilience and lower influence of drought on growth in comparison to stands of planted pines. These results suggest that promoting the conservation of high-elevation pine plantations and enhancing the regeneration of natural pine and oak may improve the resistance and resilience of these drought-prone forest ecosystems.

Saved in:
Bibliographic Details
Main Authors: Rubio-Cuadrado, Á and Camarero, J. J., Aspizua, R., Sánchez-González, M., Gil, L., Montes Pita, Fernando
Format: artículo biblioteca
Language:English
Published: Elsevier 2018
Subjects:Resilience, Resistance, Recovery, Dendroecology, Sierra Nevada,
Online Access:http://hdl.handle.net/20.500.12792/743
http://hdl.handle.net/10261/290793
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The proportion of planted forests in the Mediterranean Basin is one of the largest in the world. These plantations are dominated by pine species and present a series of characteristics such as low elevation, high competition or small tree size that make them more vulnerable to droughts. However, quantitative assessments of their post-drought growth resilience in accordance with species, site factors and tree characteristics are lacking. In this study we sampled 164 trees at four forest sites located in the drought-prone Sierra Nevada, southeastern Spain. We compared growth responsiveness to drought in rear-edge planted vs. relic natural Scots pine (Pinus sylvestris) and coexisting Pyrenean oak (Quercus pyrenaica) stands. Our objective was to characterize and compare the different growth responses to drought between species and sites and the effect of the main physiographic factors (altitude, aspect, and slope) on these responses since the influence of these factors on post-drought resistance and resilience has received little attention to date. Our results reveal that the planted pine sites with the lowest mean growth rates displayed greater resistance during drought, and that higher altitude was associated with improved resistance and/or resilience for all species and sites. Natural pine and Pyrenean oak stands were better adapted to the dry climatic conditions of the Mediterranean region where the study was undertaken, displaying greater resistance and/or resilience and lower influence of drought on growth in comparison to stands of planted pines. These results suggest that promoting the conservation of high-elevation pine plantations and enhancing the regeneration of natural pine and oak may improve the resistance and resilience of these drought-prone forest ecosystems.