With increasing site quality asymmetric competition and mortality reduces Scots pine (Pinus sylvestris L.) stand structuring across Europe

Heterogeneity of structure can increase mechanical stability, stress resistance and resilience, biodiversity and many other functions and services of forest stands. That is why many silvicultural measures aim at enhancing structural diversity. However, the effectiveness and potential of structuring may depend on the site conditions. Here, we revealed how the stand structure is determined by site quality and results from site-dependent partitioning of growth and mortality among the trees. We based our study on 90 mature, even-aged, fully stocked monocultures of Scots pine (Pinus sylvestris L.) sampled in 21 countries along a productivity gradient across Europe. A mini-simulation study further analyzed the site-dependency of the interplay between growth and mortality and the resulting stand structure. The overarching hypothesis was that the stand structure changes with site quality and results from the site-dependent asymmetry of competition and mortality. First, we show that Scots pine stands structure across Europe become more homogeneous with increasing site quality. The coefficient of variation and Gini coefficient of stem diameter and tree height continuously decreased, whereas Stand Density Index and stand basal area increased with site index. Second, we reveal a site-dependency of the growth distribution among the trees and the mortality. With increasing site index, the asymmetry of both competition and growth distribution increased and suggested, at first glance, an increase in stand heterogeneity. However, with increasing site index, mortality eliminates mainly small instead of all-sized trees, cancels the size variation and reduces the structural heterogeneity.Third, we modelled the site-dependent interplay between growth partitioning and mortality. By scenario runs for different site conditions, we can show how the site-dependent structure at the stand level emerges from the asymmetric competition and mortality at the tree level and how the interplay changes with increasing site quality across Europe. Our most interesting finding was that the growth partitioning became more asymmetric and structuring with increasing site quality, but that the mortality eliminated predominantly small trees, reduced their size variation and thus reversed the impact of site quality on the structure. Finally, the reverse effects of mode of growth partitioning and mortality on the stand structure resulted in the highest size variation on poor sites and decreased structural heterogeneity with increasing site quality. Since our results indicate where heterogeneous structures need silviculture interventions and where they emerge naturally, we conclude that these findings may improve system understanding and modelling and guide forest management aiming at structurally rich forests.

Saved in:
Bibliographic Details
Main Authors: Pretzsch, Hans, Bravo-Oviedo, Andrés, Hilmers, Torben, Ruiz-Peinado, Ricardo, Coll, Lluís, Löf, Magnus, Ahmed, Chamim, Aldea, Jorge, Ammer, Christian, Avdagic, Admir, Barbeito, Ignacio, Bielak, Kamil, Bravo, Felipe, Brazaitis, Gediminas, Cerný, Jatub, Collet, Catherine, Drössler, Lars, Fabrika, Marek, Heym, Michael, Holm, Stig Olof, Hylen, Gro, Jansons, Aris, Kurylyak, Viktor, Lombardi, Fabio, Matović, Bratislav, Metslaid, Marek, Motta, Renzo, Nord-Larsen, Thomas, Nothdurft, Arne, Ordóñez, Cristóbal, Reventlow, Ditlev Otto Juel, Sitko, Roman, Sramek, Vit, Steckel, Mathias, Svodoba, Miroslav, Uhl, Enno, Verheyen, Kris, Vospernik, Sonja, Wolff, Barbara, Zlatanov, Tzvetan
Other Authors: European Commission
Format: artículo biblioteca
Language:English
Published: Elsevier 2022-09-15
Subjects:Asymmetry of competition, Size-dependent mortality, Mode of competitionGrowth dominance coefficient, Gini coefficient, Structural heterogeneity,
Online Access:http://hdl.handle.net/10261/279063
http://dx.doi.org/10.13039/501100000780
http://dx.doi.org/10.13039/501100001659
http://dx.doi.org/10.13039/501100014180
http://dx.doi.org/10.13039/501100007515
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Heterogeneity of structure can increase mechanical stability, stress resistance and resilience, biodiversity and many other functions and services of forest stands. That is why many silvicultural measures aim at enhancing structural diversity. However, the effectiveness and potential of structuring may depend on the site conditions. Here, we revealed how the stand structure is determined by site quality and results from site-dependent partitioning of growth and mortality among the trees. We based our study on 90 mature, even-aged, fully stocked monocultures of Scots pine (Pinus sylvestris L.) sampled in 21 countries along a productivity gradient across Europe. A mini-simulation study further analyzed the site-dependency of the interplay between growth and mortality and the resulting stand structure. The overarching hypothesis was that the stand structure changes with site quality and results from the site-dependent asymmetry of competition and mortality. First, we show that Scots pine stands structure across Europe become more homogeneous with increasing site quality. The coefficient of variation and Gini coefficient of stem diameter and tree height continuously decreased, whereas Stand Density Index and stand basal area increased with site index. Second, we reveal a site-dependency of the growth distribution among the trees and the mortality. With increasing site index, the asymmetry of both competition and growth distribution increased and suggested, at first glance, an increase in stand heterogeneity. However, with increasing site index, mortality eliminates mainly small instead of all-sized trees, cancels the size variation and reduces the structural heterogeneity.Third, we modelled the site-dependent interplay between growth partitioning and mortality. By scenario runs for different site conditions, we can show how the site-dependent structure at the stand level emerges from the asymmetric competition and mortality at the tree level and how the interplay changes with increasing site quality across Europe. Our most interesting finding was that the growth partitioning became more asymmetric and structuring with increasing site quality, but that the mortality eliminated predominantly small trees, reduced their size variation and thus reversed the impact of site quality on the structure. Finally, the reverse effects of mode of growth partitioning and mortality on the stand structure resulted in the highest size variation on poor sites and decreased structural heterogeneity with increasing site quality. Since our results indicate where heterogeneous structures need silviculture interventions and where they emerge naturally, we conclude that these findings may improve system understanding and modelling and guide forest management aiming at structurally rich forests.