Emerging stability of forest productivity by mixing two species buffers temperature destabilizing effect

[Methods] The research unit is the forest stand. We used data from a total of 261 forest stands belonging to three triplet-transects across Europe. Each triplet consists of a plot established in a two species mixed stands, and two plots on the respective monospecific stands; the three stands are located close to each other under similar environmental conditions. The species composition of the mixtures changes in the three triplet-transects. The first transect covers monospecific and mixed stands of Fagus sylvatica and Pinus sylvestris (32 sites, 96 stands), the second of Quercus petraea and Pinus sylvestris (35 sites, 105 stands), and the third of Picea abies and Pinus sylvestris (20 sites, 60 stands). Plot sizes varies from 0-02 to 0.15 ha depending on stand density a local site characteristics. In each plot the diameter of all trees was measured, and two increment cores per tree were taken at a 1.3 m stem height in a sample of approximately 20 trees per species and plot. Annual ring widths were measured and cross-dated using standardized dendrochronological techniques. The studied period was 2000-2013 for the beech-pine transect and 2004-2017 for the oak-pine and spruce-pine transects (except in five triplets where the period was 2000-2013), the last year corresponding to triplet establishment. Using data from cored trees, tree diameter increment-diameter models were fitted by year, species and plot to estimate diameter increments of noncored trees for the studied period. Dead trees during the last 14 years were estimated using stumps, standing and lying dead trees, and their decomposition status. Based on measured tree diameters and annual diameter increments we estimated species and stand annual basal area (BA) and basal area growth (BAI), which conforms the dataset. Annual climate data were obtained from meteorological weather stations located in the proximity of each triplet (50 triplets). When local station data were not available, national digital climatic atlas data (24 triplets) or more general gridded data (13 triplets) were used (mostly CRU gridded database). For each triplet mean and standard deviation of annual precipitation (P) and mean annual temperature (T) for the studied period were calculated.

Saved in:
Bibliographic Details
Main Authors: del Río, Miren, Ruiz-Peinado, Ricardo, Holm, Stig Olof, Jansons, Aris, Nord‐Larsen, Thomas, Verheyen, Kris, Bravo-Oviedo, Andrés, Pretzsch, Hans, Jactel, H., Coll, Lluis, Löf, Magnus, Aldea, Jorge, Ammer, Christian, Avdagić, Admir, Barbeito, Ignacio, Bielak, Kamil, Bravo, Felipe, Brazaitis, Gediminas, Cerný, Jakub, Collet, Catherine, Condés, Sonia, Drössler, Lars, Fabrika, Marek, Heym, Michael, Hylen, Gro, Kurylyak, Viktor, Lombardi, Fabio, Matović, Bratislav, Metslaid, Marek, Motta, Renzo, Nothdurft, Arne, den Ouden, Jan, Pach, Maciej, Pardos, Marta, Poeydebat, Charlotte, Ponette, Quentin, Pérot, Tomas, Reventlow, Ditlev Otto Juel, Sitko, Roman, Sramek, Vit, Steckel, Mathias, Svoboda, Miroslav, Vospernik, Sonja, Wolff, Barbara, Zlatanov, Tzvetan
Other Authors: Ministerio de Ciencia, Innovación y Universidades (España)
Format: dataset biblioteca
Language:English
Published: Dryad 2022-08-08
Subjects:Agriculture, forestry, and fisheries, Additive effect, Basal area growth, Climate effect, Fagus sylvatica, Forest ecosystems productivity, Mixed forests, Overyielding, Picea abies, Pinus sylvestris, Quercus petraea, Species asynchrony, Temporal stability, http://aims.fao.org/aos/agrovoc/c_3062, http://aims.fao.org/aos/agrovoc/c_7887, http://aims.fao.org/aos/agrovoc/c_9fe82378, Bosques, Árboles, Productividad agrícola,
Online Access:http://hdl.handle.net/10261/276396
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Methods] The research unit is the forest stand. We used data from a total of 261 forest stands belonging to three triplet-transects across Europe. Each triplet consists of a plot established in a two species mixed stands, and two plots on the respective monospecific stands; the three stands are located close to each other under similar environmental conditions. The species composition of the mixtures changes in the three triplet-transects. The first transect covers monospecific and mixed stands of Fagus sylvatica and Pinus sylvestris (32 sites, 96 stands), the second of Quercus petraea and Pinus sylvestris (35 sites, 105 stands), and the third of Picea abies and Pinus sylvestris (20 sites, 60 stands). Plot sizes varies from 0-02 to 0.15 ha depending on stand density a local site characteristics. In each plot the diameter of all trees was measured, and two increment cores per tree were taken at a 1.3 m stem height in a sample of approximately 20 trees per species and plot. Annual ring widths were measured and cross-dated using standardized dendrochronological techniques. The studied period was 2000-2013 for the beech-pine transect and 2004-2017 for the oak-pine and spruce-pine transects (except in five triplets where the period was 2000-2013), the last year corresponding to triplet establishment. Using data from cored trees, tree diameter increment-diameter models were fitted by year, species and plot to estimate diameter increments of noncored trees for the studied period. Dead trees during the last 14 years were estimated using stumps, standing and lying dead trees, and their decomposition status. Based on measured tree diameters and annual diameter increments we estimated species and stand annual basal area (BA) and basal area growth (BAI), which conforms the dataset. Annual climate data were obtained from meteorological weather stations located in the proximity of each triplet (50 triplets). When local station data were not available, national digital climatic atlas data (24 triplets) or more general gridded data (13 triplets) were used (mostly CRU gridded database). For each triplet mean and standard deviation of annual precipitation (P) and mean annual temperature (T) for the studied period were calculated.