Limits to reproduction and seed size-number tradeoffs that shape forest dominance and future recovery

The relationships that control seed production in trees are key to understand evolutionary pressures that have shaped forests. A global synthesis of fecundity data reveals that while seed production is not constrained by a strict size-number trade-off, it is influenced by taxonomy and nutrient allocation. The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential.

Saved in:
Bibliographic Details
Main Authors: Qiu, Tong, Andrus, Robert, Aravena Acuña, Marie Claire, Ascoli, Davide, Bergeron, Yves, Berretti, Roberta, Berveiller, Daniel, Bogdziewicz, Michal, Boivin, Thomas, Bonal, Raul, Bragg, Don C., Caignard, Thomas, Calama, Rafael, Camarero, J. Julio, Chang-Yang, Chia-Hao, Cleavitt, Natalie L., Courbaud, Benoit, Courbet, Francois, Curt, Thomas, Das, Adrian J., Daskalakou, Evangelia, Davi, Hendrik, Delpierre, Nicolas, Delzon, Sylvain, Dietze, Michael, Donoso Calderón, Sergio, Dormont, Laurent, Espelta, Josep, Fahey, Timothy J., Farfan-Rios, William, Gehring, Catherine A., Gilbert, Gregory S., Gratzer, Georg, Greenberg, Cathryn H., Guo, Qinfeng, Hacket-Pain, Andrew, Hampe, Arndt, Han, Qingmin, Lambers, Jeanneke Hille Ris, Hoshizaki, Kazunhiko, Ibáñez, Inés, Johnstone, Jill F., Journé, Velentin, Kabeya, Daisuke, Kilner, Christopher L., Kitzberger, Thomas, Knops, Johannes M. H., Kobe, Richard K., Kunstler, Georges, Lageard, Jonathan G. A., La Montagne, Jalene M., Ledwon, Mateusz, Lefevre, Francois, Leininger, Theodor, Limousin, Jean-Marc, Lutz, James A., Macias, DIana, McIntire, Eliot J. B., Moore, Christopher M., Moran, Emily, Motta, Renzo, Myers, Jonathan A., Nagel, Thomas A., Noguchi, Kyotaro, Ourcival, Jean-Marc, Parmenter, Robert, Pearse, Ian S., Pérez Ramos, Ignacio M., Piechnik, Lukasz, Poulsen, John, Poulton-Kamakura, Renata, Redmond, Miranda D., Reid, Chantal D., Rodman, Kyle C., Rodríguez Sánchez, Francisco, Sanguinetti, Javier D., Scher, C. Lane, Schlesinger, William H., Schmidt Van Marle, Harald, Seget, Barbara, Sharma, Shubhi, Silman, Miles, Steele, Michael A., Stephenson, Nathan L., Straub, Jacob N., Sun, I-Fang, Sutton, Samantha, Swenson, Jennifer J., Swift, Margaret, Thomas, Peter A., Uriarte, María, Vacchiano, Giorgio, Veblen, Thomas T., Whipple, Amy V., Whitham, Thomas G., Wion, Andreas P., Wright, Boyd, Wright, S. Joseph, Zhu, Kai, Zimmerman, Jess K., Zlotin, Roman, Zywiec, Magdalena, Clark, James S.
Format: Artículo de revista biblioteca
Language:English
Published: Nature 2022-07-11T15:12:49Z
Subjects:Recruitmen limitation, Nitrogen limitation, Fruit production, Spatial scalesr package, Patterns, Mass, Temperate, Dispersal, Evolution,
Online Access:https://repositorio.uchile.cl/handle/2250/186584
https://bibliotecadigital.infor.cl/handle/20.500.12220/32597
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The relationships that control seed production in trees are key to understand evolutionary pressures that have shaped forests. A global synthesis of fecundity data reveals that while seed production is not constrained by a strict size-number trade-off, it is influenced by taxonomy and nutrient allocation. The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential.