Innovative particleboard material from the organic fraction of municipal solid waste

This study presents a challenging approach that addresses the efficient management of the organic fraction of municipal solid waste (OFMSW) by hydrothermal carbonization (HTC) for the development of novel sustainable low-CO2 building materials. Mild HTC treatment at 180 °C for 2 h transformed low-grade OFMSW into a renewable carbonaceous solid (hydrochar), which displays promising properties for application in particleboards. Taking advantage of the presence of extractives acting as natural binders, the hydrochar particles with sizes of <0.3 mm, 0.3–1 mm, and 1–2 mm agglomerate successfully by simple pressing at 3 MPa for 7 min at room temperature (∼ 25 °C). The resulting binderless monolithic probes display a density of 838 and 883 kg/m3 for the finest and coarsest grain sizes, respectively, and approximately 30% porosity. The mechanical resistance is enhanced by the use of larger particle sizes, and values of modulus of rupture and tensile strength of 21.64 MPa and 18.99 MPa are reached, respectively. The thermal conductivity of the probes in the range of 0.091–0.132 W/(m∙K) suggests the potential of OFMSW-derived hydrochar for thermal insulation panels.

Saved in:
Bibliographic Details
Main Authors: Santos, Michael M., Díez Díaz-Estébanez, María Antonia, Suárez, Marta, Álvarez Centeno, Teresa
Other Authors: European Commission
Format: artículo biblioteca
Language:English
Published: Elsevier 2021
Subjects:Food waste, Particleboard, Hydrothermal carbonization, Building material, Hydrochar,
Online Access:http://hdl.handle.net/10261/259112
http://dx.doi.org/10.13039/501100003339
http://dx.doi.org/10.13039/100007691
http://dx.doi.org/10.13039/501100000780
http://dx.doi.org/10.13039/100013276
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study presents a challenging approach that addresses the efficient management of the organic fraction of municipal solid waste (OFMSW) by hydrothermal carbonization (HTC) for the development of novel sustainable low-CO2 building materials. Mild HTC treatment at 180 °C for 2 h transformed low-grade OFMSW into a renewable carbonaceous solid (hydrochar), which displays promising properties for application in particleboards. Taking advantage of the presence of extractives acting as natural binders, the hydrochar particles with sizes of <0.3 mm, 0.3–1 mm, and 1–2 mm agglomerate successfully by simple pressing at 3 MPa for 7 min at room temperature (∼ 25 °C). The resulting binderless monolithic probes display a density of 838 and 883 kg/m3 for the finest and coarsest grain sizes, respectively, and approximately 30% porosity. The mechanical resistance is enhanced by the use of larger particle sizes, and values of modulus of rupture and tensile strength of 21.64 MPa and 18.99 MPa are reached, respectively. The thermal conductivity of the probes in the range of 0.091–0.132 W/(m∙K) suggests the potential of OFMSW-derived hydrochar for thermal insulation panels.