Thermal Integration of a Flexible Calcium Looping CO2 Capture System in an Existing Back-Up Coal Power Plant
The CO2 capture from back-up power plants by making use of calcium looping systems combined with large piles of Ca-solids has been studied in this work. A flexible CO2 capture system based on a concept described in a previous work has been integrated into an existing power plant by including a small oxy-fired calciner (that represents just 8% of the total thermal capacity) to steadily regenerate the sorbent and a carbonator reactor following the back-up power plant operation periods to capture 90% of the CO2 as CaCO3 and two large piles of rich CaO and CaCO3 solids stored at modest temperatures. When the back-up plant enters into operation, the calcined solids are brought into contact with the flue gases in the carbonator reactor; meanwhile, the oxy-calciner operates continuously at a steady state. In order to improve the flexibility of the CO2 capture system and to minimize the increase of CO2 capture costs associated with the additional new equipment used only during the brief back-up periods, we propose using the steam cycle of the existing power plant to recover a large fraction of the heat available from the streams leaving the carbonator. This makes it possible to maintain the electrical power output but reducing the thermal input to the power plant by 12% and thus the size of the associated CO2 capture equipment. To generate the auxiliary power required for the oxy-calciner block, a small steam cycle is designed by integrating the waste heat from the streams leaving this reactor. By solving the mass and heat balances and proposing a feasible thermal integration scheme by using Aspen Hysys, it has been calculated that the CO2 emitted by long-amortized power plants operated as back-up can be captured with a net efficiency of 28%.
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | artículo biblioteca |
Language: | English |
Published: |
American Chemical Society
2020-03-03
|
Online Access: | http://hdl.handle.net/10261/206410 http://dx.doi.org/10.13039/501100000780 http://dx.doi.org/10.13039/100011941 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The CO2 capture from back-up power plants by making use of calcium looping systems combined with large piles of Ca-solids has been studied in this work. A flexible CO2 capture system based on a concept described in a previous work has been integrated into an existing power plant by including a small oxy-fired calciner (that represents just 8% of the total thermal capacity) to steadily regenerate the sorbent and a carbonator reactor following the back-up power plant operation periods to capture 90% of the CO2 as CaCO3 and two large piles of rich CaO and CaCO3 solids stored at modest temperatures. When the back-up plant enters into operation, the calcined solids are brought into contact with the flue gases in the carbonator reactor; meanwhile, the oxy-calciner operates continuously at a steady state. In order to improve the flexibility of the CO2 capture system and to minimize the increase of CO2 capture costs associated with the additional new equipment used only during the brief back-up periods, we propose using the steam cycle of the existing power plant to recover a large fraction of the heat available from the streams leaving the carbonator. This makes it possible to maintain the electrical power output but reducing the thermal input to the power plant by 12% and thus the size of the associated CO2 capture equipment. To generate the auxiliary power required for the oxy-calciner block, a small steam cycle is designed by integrating the waste heat from the streams leaving this reactor. By solving the mass and heat balances and proposing a feasible thermal integration scheme by using Aspen Hysys, it has been calculated that the CO2 emitted by long-amortized power plants operated as back-up can be captured with a net efficiency of 28%. |
---|