Hybrid direct carbon fuel cell anode processes investigated using a 3-electrode half-cell setup

A 3-electrode half-cell setup consisting of a yttria-stabilized zirconia (YSZ) electrolyte support was employed to investigate the chemical and electrochemical processes occurring in the vicinity of a model hybrid direct carbon fuel cell (HDCFC) anode (Ni-YSZ) in contact with a molten carbon-alkali carbonate slurry. Electrochemical testing, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), with and without the Ni-YSZ layer highlighted the promotional effect of the Ni-YSZ anode layer, and revealed the contributions of Ni/NiO, and potentially K/K2O, redox couple(s). Treated anthracite and bituminous coals, as well as carbon black, were tested, revealing similar open circuit potential and activation energies in mixed 96–4 vol% N2–CO2 and 50–50 vol% CO–CO2 environments between 700 and 800 °C. Bituminous coal showed the highest activity, likely associated to a high O/C ratio and hydrogen content. Based on acquired data, a reaction scheme was proposed for processes at the working electrode, including the role of bubble formation in the vicinity of the electrochemically active solid/molten medium interface.

Saved in:
Bibliographic Details
Main Authors: Deleebeeck, L., Arenillas de la Puente, Ana, Menéndez Díaz, José Ángel, Hansen, K. Kammer
Format: artículo biblioteca
Language:English
Published: Elsevier 2014-12-26
Subjects:Direct carbon fuel cell (DCFC), Half-cell, Cyclic voltammetry, Bituminous coal, Carbon monoxide, Carbon dioxide,
Online Access:http://hdl.handle.net/10261/132761
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A 3-electrode half-cell setup consisting of a yttria-stabilized zirconia (YSZ) electrolyte support was employed to investigate the chemical and electrochemical processes occurring in the vicinity of a model hybrid direct carbon fuel cell (HDCFC) anode (Ni-YSZ) in contact with a molten carbon-alkali carbonate slurry. Electrochemical testing, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), with and without the Ni-YSZ layer highlighted the promotional effect of the Ni-YSZ anode layer, and revealed the contributions of Ni/NiO, and potentially K/K2O, redox couple(s). Treated anthracite and bituminous coals, as well as carbon black, were tested, revealing similar open circuit potential and activation energies in mixed 96–4 vol% N2–CO2 and 50–50 vol% CO–CO2 environments between 700 and 800 °C. Bituminous coal showed the highest activity, likely associated to a high O/C ratio and hydrogen content. Based on acquired data, a reaction scheme was proposed for processes at the working electrode, including the role of bubble formation in the vicinity of the electrochemically active solid/molten medium interface.