Supercapacitor modified with methylene blue as redox active electrolyte

MWCNT-based supercapacitors (SC) containing methylene blue (MB) as redox active electrolyte were studied. MWCNTs were employed as model of electrode active material due to their ideal double-layer behavior facilitates the investigation of the energy storage mechanisms involved. MB led to a cell capacitance enhancement equal to 4.5 times the original cell capacitance of MWCNTs in sulphuric acid with a capacitance reduction of only 12% after 6000 charge–discharge cycles. The potential evolution of each electrode during galvanostatic cycling revealed that MB redox reaction develops in both electrodes simultaneously in the voltage range of 0–0.104 V and that this is the main cause of cell capacitance enhancement. Beyond this voltage range, the Faradaic contribution from the MB redox reaction decreases because the anode behaves as a capacitative electrode with a rather reduced charge-capacity due to the small surface area of MWCNTs. By means of a modified assembly composed of a Nafion membrane and MB and sulfuric acid solutions located in the cathode and anode compartments, respectively, it was demonstrated the limiting role of the capacitative electrode in the cell charge-capacity in this type of hybrid devices.

Saved in:
Bibliographic Details
Main Authors: Roldán Luna, Silvia, Granda Ferreira, Marcos, Menéndez López, Rosa María, Santamaría Ramírez, Ricardo, Blanco Rodríguez, Clara
Format: artículo biblioteca
Language:English
Published: Elsevier
Subjects:Methylene blue, Multiwalled carbon nanotubes, Faradaic reactions, Redox electrolyte, Supercapacitor,
Online Access:http://hdl.handle.net/10261/114339
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:MWCNT-based supercapacitors (SC) containing methylene blue (MB) as redox active electrolyte were studied. MWCNTs were employed as model of electrode active material due to their ideal double-layer behavior facilitates the investigation of the energy storage mechanisms involved. MB led to a cell capacitance enhancement equal to 4.5 times the original cell capacitance of MWCNTs in sulphuric acid with a capacitance reduction of only 12% after 6000 charge–discharge cycles. The potential evolution of each electrode during galvanostatic cycling revealed that MB redox reaction develops in both electrodes simultaneously in the voltage range of 0–0.104 V and that this is the main cause of cell capacitance enhancement. Beyond this voltage range, the Faradaic contribution from the MB redox reaction decreases because the anode behaves as a capacitative electrode with a rather reduced charge-capacity due to the small surface area of MWCNTs. By means of a modified assembly composed of a Nafion membrane and MB and sulfuric acid solutions located in the cathode and anode compartments, respectively, it was demonstrated the limiting role of the capacitative electrode in the cell charge-capacity in this type of hybrid devices.