Changes in coal char reactivity and texture during combustion in an entrained flow reactor

Char particle combustion is the slowest step in the combustion of coal, therefore char reactivity and texture have an important influence on this process. In this work, two coals were devolatilised in an entrained flow reactor and the chars obtained were burned under different experimental conditions in order to achieve various degrees of burnoff. Char reactivity was determined by means of non-isothermal thermogravimetric analysis, and the conversion-time data were evaluated by the random pore model proposed by Bhatia and Perlmutter. Char texture was characterised by means of N2 and CO2 adsorption isotherms. The surface areas obtained were used to calculate intrinsic reaction rate parameters. It was found that under chemical controlled conditions, the available surface area during combustion is best represented by the N2 surface area.

Saved in:
Bibliographic Details
Main Authors: Arias Rozada, Borja, Pevida García, Covadonga, Rubiera González, Fernando, Pis Martínez, José Juan
Format: artículo biblioteca
Language:English
Published: Springer 2007-03
Subjects:Entrained flow reactor, Intrinsic char reactivity, N2 surface area,
Online Access:http://hdl.handle.net/10261/103376
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Char particle combustion is the slowest step in the combustion of coal, therefore char reactivity and texture have an important influence on this process. In this work, two coals were devolatilised in an entrained flow reactor and the chars obtained were burned under different experimental conditions in order to achieve various degrees of burnoff. Char reactivity was determined by means of non-isothermal thermogravimetric analysis, and the conversion-time data were evaluated by the random pore model proposed by Bhatia and Perlmutter. Char texture was characterised by means of N2 and CO2 adsorption isotherms. The surface areas obtained were used to calculate intrinsic reaction rate parameters. It was found that under chemical controlled conditions, the available surface area during combustion is best represented by the N2 surface area.