Assessing contamination profiles in livers from road-killed owls
Raptors are recognized as valuable sentinel species for monitoring environmental contaminants owing to their foraging behavior across terrestrial and aquatic food webs and their high trophic position. The present study monitored environmental contaminants in livers from road-killed owls to evaluate differences in the exposure patterns due to factors such as species, age, and sex of individuals. Carcasses of road-killed individuals of eagle owl (Bubo bubo), long-eared owl (Asio otus), little owl (Athene noctua), tawny owl (Strix aluco), and barn owl (Tyto alba) were collected in Alentejo (Portugal). Eighty-one organic contaminants were analyzed, including organochlorine pesticides (OCPs), per- and polyfluoroalkyl substances (PFAS), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), pharmaceuticals, in-use pesticides, and organophosphate esters (OPEs). Overall, 21 contaminants were detected. In all species ∑OCPs were prevalent at concentrations from 3.24 to 4480 ng/g wet weight, followed by perfluorooctane sulfonic acid (PFOS), the only PFASs detected (from 2.88 to 848 ng/g wet wt) and ∑PCBs (1.98-2010 ng/g wet wt); ∑PAHs were ubiquitous but detected at the lowest concentrations (7.35-123 ng/g wet wt). Differences among species were observed according to principal component analysis. Eagle owl and long-eared owl presented the highest levels of ∑OCPs, ∑PCBs, and PFOS, consistent with its higher trophic position, while ∑PAHs prevailed in tawny owl, barn owl, and little owl, related to their frequent use of urban areas for nesting and roadsides for hunting. Adults presented higher concentrations of ∑OCPs and ∑PCBs than juveniles, while no differences were observed for PFOS and ∑PAHs. Pharmaceuticals, in-use pesticides, and OPEs were not detected. Overall, the present study shows specific contamination patterns in five species with similar diet but with differences in habitat preferences.
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | artículo biblioteca |
Language: | English |
Published: |
Wiley-VCH
2023-12-26
|
Subjects: | Wildlife toxicology, Biomonitoring, Birds, Contaminants, Organic contaminants, Ensure healthy lives and promote well-being for all at all ages, Ensure availability and sustainable management of water and sanitation for all, |
Online Access: | http://hdl.handle.net/10261/348073 http://dx.doi.org/10.13039/501100004837 http://dx.doi.org/10.13039/501100011033 http://dx.doi.org/10.13039/501100000780 https://api.elsevier.com/content/abstract/scopus_id/85184900714 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Raptors are recognized as valuable sentinel species for monitoring environmental contaminants owing to their foraging behavior across terrestrial and aquatic food webs and their high trophic position. The present study monitored environmental contaminants in livers from road-killed owls to evaluate differences in the exposure patterns due to factors such as species, age, and sex of individuals. Carcasses of road-killed individuals of eagle owl (Bubo bubo), long-eared owl (Asio otus), little owl (Athene noctua), tawny owl (Strix aluco), and barn owl (Tyto alba) were collected in Alentejo (Portugal). Eighty-one organic contaminants were analyzed, including organochlorine pesticides (OCPs), per- and polyfluoroalkyl substances (PFAS), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), pharmaceuticals, in-use pesticides, and organophosphate esters (OPEs). Overall, 21 contaminants were detected. In all species ∑OCPs were prevalent at concentrations from 3.24 to 4480 ng/g wet weight, followed by perfluorooctane sulfonic acid (PFOS), the only PFASs detected (from 2.88 to 848 ng/g wet wt) and ∑PCBs (1.98-2010 ng/g wet wt); ∑PAHs were ubiquitous but detected at the lowest concentrations (7.35-123 ng/g wet wt). Differences among species were observed according to principal component analysis. Eagle owl and long-eared owl presented the highest levels of ∑OCPs, ∑PCBs, and PFOS, consistent with its higher trophic position, while ∑PAHs prevailed in tawny owl, barn owl, and little owl, related to their frequent use of urban areas for nesting and roadsides for hunting. Adults presented higher concentrations of ∑OCPs and ∑PCBs than juveniles, while no differences were observed for PFOS and ∑PAHs. Pharmaceuticals, in-use pesticides, and OPEs were not detected. Overall, the present study shows specific contamination patterns in five species with similar diet but with differences in habitat preferences. |
---|