Genetic Improvement of Wine Yeasts

In recent years, wine market is undergoing a change due to the ever-growing request to improve the sensory features and nutritional properties of the final product. Most wine production is based on the use of starter cultures consisting of selected strains of Saccharomyces cerevisiae, able to ensure quick and controlled fermentations. However, the reduced number of really different starters can lead to a wine standardization resulting in flattening of taste. Moreover, there is a still growing request of winemaking process innovation of the and, in this sense, yeasts can play a central role. In order to gain innovative characteristics, the research relies on the isolation and selection of new oenological strains of S. cerevisiae and non-Saccharomyces species showing interesting metabolic or technological features, or on the improvement of wine yeasts at genetic level. In the case of the latter approach, examples to obtain both non-Genetically Modified (GM) and GM organisms (GMO) are available in literature. In this chapter we discuss the significant developments of the genetic engineering based on standard homologous integration, the inter and intraspecific hybridization in wine yeasts, the use of random mutagenesis, the foundation of the experimental evolution strategy and we describe the CRISPR/Cas9 genome editing approach that has been revolutionizing the field of biotechnology.

Saved in:
Bibliographic Details
Main Authors: Vigentini, Ileana, González García, Ramón, Tronchoni, Jordi
Format: capítulo de libro biblioteca
Published: Springer 2019-09-17
Online Access:http://hdl.handle.net/10261/209774
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent years, wine market is undergoing a change due to the ever-growing request to improve the sensory features and nutritional properties of the final product. Most wine production is based on the use of starter cultures consisting of selected strains of Saccharomyces cerevisiae, able to ensure quick and controlled fermentations. However, the reduced number of really different starters can lead to a wine standardization resulting in flattening of taste. Moreover, there is a still growing request of winemaking process innovation of the and, in this sense, yeasts can play a central role. In order to gain innovative characteristics, the research relies on the isolation and selection of new oenological strains of S. cerevisiae and non-Saccharomyces species showing interesting metabolic or technological features, or on the improvement of wine yeasts at genetic level. In the case of the latter approach, examples to obtain both non-Genetically Modified (GM) and GM organisms (GMO) are available in literature. In this chapter we discuss the significant developments of the genetic engineering based on standard homologous integration, the inter and intraspecific hybridization in wine yeasts, the use of random mutagenesis, the foundation of the experimental evolution strategy and we describe the CRISPR/Cas9 genome editing approach that has been revolutionizing the field of biotechnology.