Pasta products enriched with moringa sprout powder as nutritive dense foods with bioactive potential

Five fettuccini formulations containing 5% (5MSP), 10% (10MSP), 15% (15MSP), 20% (20MSP), and 30% (30MSP) of moringa sprout powder (MSP) were produced aimed at improving the nutritional and bioactive profile of conventional pasta. A gradual increase of protein, lipids, fiber and mineral content was observed in fettuccine as the MSP amount increased, while carbohydrates were reduced. MSP-addition also increased the levels of thiamine, riboflavin, γ- aminobutyric acid, glucosinolates and the antioxidant activity in pasta. All pasta doughs showed similar rheological parameters. Textural properties decreased after MSP inclusion, but the values obtained were close to those of control. Incorporation of MSP up to 10% did not modify substantially the sensory attributes of fettuccine, but higher amounts had a negative impact. Thus, addition of MSP up to 10% is a promising technological approach to improve the nutritional and functional properties of pasta without compromising consumer acceptance.

Saved in:
Bibliographic Details
Main Authors: Coello, Karin E., Peñas, Elena, Martínez Villaluenga, Cristina, Cartea González, María Elena, Velasco Pazos, Pablo, Frías, Juana
Other Authors: Ministerio de Ciencia, Innovación y Universidades (España)
Format: artículo biblioteca
Language:English
Published: Elsevier 2021
Subjects:Moringa, Pasta, Germination, Nutritional properties, Bioactive compounds, Antioxidant activity, Sensory properties, Texture,
Online Access:http://hdl.handle.net/10261/267156
http://dx.doi.org/10.13039/501100011033
http://dx.doi.org/10.13039/501100003339
http://dx.doi.org/10.13039/501100000780
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Five fettuccini formulations containing 5% (5MSP), 10% (10MSP), 15% (15MSP), 20% (20MSP), and 30% (30MSP) of moringa sprout powder (MSP) were produced aimed at improving the nutritional and bioactive profile of conventional pasta. A gradual increase of protein, lipids, fiber and mineral content was observed in fettuccine as the MSP amount increased, while carbohydrates were reduced. MSP-addition also increased the levels of thiamine, riboflavin, γ- aminobutyric acid, glucosinolates and the antioxidant activity in pasta. All pasta doughs showed similar rheological parameters. Textural properties decreased after MSP inclusion, but the values obtained were close to those of control. Incorporation of MSP up to 10% did not modify substantially the sensory attributes of fettuccine, but higher amounts had a negative impact. Thus, addition of MSP up to 10% is a promising technological approach to improve the nutritional and functional properties of pasta without compromising consumer acceptance.