Production of O-desmethylangolensin, tetrahydrodaidzein, 6’-hydroxy-O-desmethylangolensin and 2-(4-hydroxyphenyl)-propionic acid in fermented soy beverage by lactic acid bacteria and Bifidobacterium strains
Isoflavones intake is associated with health benefits. The metabolism of isoflavones by bacteria plays a key role in their biotransformation. Therefore, commercial soy drink was fermented by 11 lactic acid bacteria (LAB) and 9 bifidobacteria strains. The majority of the strains showed deglycosylation of the isoflavone glycosides present in soy drink and appearance of the aglycones daidzein, genistein and glycitein. Moreover, we observed the further transformation of daidzein into O-desmethylangolensin (O-DMA) and tetrahydrodaidzein, alongside with dihydrodaidzein (DHD) and a putative isomer of DHD. On the other hand, genistein was transformed by nearly all strains into 6-hydroxy-O-desmethylangolensin (6-hydroxy-O-DMA), but no dihydrogenistein production was registered. A high concentration of 2-(4-hydroxyphenyl)-propionic acid was observed, suggesting the degradation of O-DMA and 6-hydroxy-O-DMA. The potential of LAB and Bifidobacterium strains to produce functional soy drink enriched with bioactive isoflavones is demonstrated in this work.
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | artículo biblioteca |
Language: | English |
Published: |
Elsevier
2020
|
Subjects: | Soy beverage, O-desmethylangolensin, Bioactive isoflavones, Lactic acid bacteria, Bifidobacterium, |
Online Access: | http://hdl.handle.net/10261/219431 http://dx.doi.org/10.13039/501100011033 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Isoflavones intake is associated with health benefits. The metabolism of isoflavones by bacteria plays a key role in their biotransformation. Therefore, commercial soy drink was fermented by 11 lactic acid bacteria (LAB) and 9 bifidobacteria strains. The majority of the strains showed deglycosylation of the isoflavone glycosides present in soy drink and appearance of the aglycones daidzein, genistein and glycitein. Moreover, we observed the further transformation of daidzein into O-desmethylangolensin (O-DMA) and tetrahydrodaidzein, alongside with dihydrodaidzein (DHD) and a putative isomer of DHD. On the other hand, genistein was transformed by nearly all strains into 6-hydroxy-O-desmethylangolensin (6-hydroxy-O-DMA), but no dihydrogenistein production was registered. A high concentration of 2-(4-hydroxyphenyl)-propionic acid was observed, suggesting the degradation of O-DMA and 6-hydroxy-O-DMA. The potential of LAB and Bifidobacterium strains to produce functional soy drink enriched with bioactive isoflavones is demonstrated in this work. |
---|